Total Synthesis of the Macrolide Antitumor Antibiotic Lankacidin C

Andrew S. Kende,* Kun Liu, István Kaldor, Gilbert Dorey, and Kevin Koch
Contribution from the Department of Chemistry, University of Rochester, Rochester, New York 14627

Received May 1, 1995 ${ }^{\text {® }}$

Abstract

The first total synthesis of natural (-)-lankacidin $\mathrm{C}(1)$ has been achieved by a convergent, enantioselective sequence starting from D-arabinose and L -aspartic acid, proceeding through the tricyclic carbamate $\mathbf{1 5}$ as an advanced relay intermediate. Specifically, the β-lactam diene intermediate $\mathbf{4 1}$ is acylated by the thiopyridyl ester 34 c . The resulting β-ketolactam $\mathbf{4 2}$ is stereospecifically reduced by $\mathrm{KEt}_{3} \mathrm{BH}$ to carbinol $\mathbf{4 3}$, which on desilylation undergoes acid-catalyzed $\mathrm{N} \rightarrow \mathrm{O}$ acyl migration to yield the δ-lactone 44 . The derived iodo aldehyde 46 undergoes Stille coupling to give tetraene 54a, which upon Stork-Takahashi cyclization to ketone $\mathbf{5 6}$ and CBS reduction gives the key relay 15. N-acylation of the latter, and then regioselective carbamate scission followed by Dess-Martin oxidation, produces the target antibiotic $(-)$-lankacidin $\mathbf{C}(\mathbf{1})$.

Introduction

The antitumor antibiotic lankacidin C (1), also referred to as bundlin A or T-2636 C in the Japanese literature, is the parent member of a group of 17 -membered macrocyclic tetraenes (Figure 1) isolated independently from various species of Streptomyces by researchers in Switzerland ${ }^{1}$ and Japan. ${ }^{2.3}$ The polyfunctional nature and stereochemical details of the lankacidin C structure, including the absolute configuration, have been firmly established by an extensive degradative chemistry ${ }^{4}$ and by the single-crystal X-ray determination of its $2^{\prime}-[(p$-bromophenyl)sulfonyl]hydrazone. ${ }^{5}$ Other members of the group are interrelated by the presence or absence of an acetyl function at the $\mathrm{C}(14)$ oxygen as well as by a variable oxidation level at C(2'). Proof of these structures has come from interconversions of the family members by oxidation, reduction, and acetylation. ${ }^{4}$

The lankacidins show strong antimicrobial activities against a variety of Gram-positive bacteria, including several strains resistant to the conventional macrolide antibiotics. ${ }^{6}$ More importantly, these antibiotics are well tolerated and show weak toxicities in mice. ${ }^{7}$ Unlike most other antibacterial substances, lankacidin C and its $C(8)$ and $C(14)$ acyl derivatives show considerable in vivo antitumor activity against L1210 leukemia, B16 melanoma, and 6C3 HED/OG lymphosarcoma. ${ }^{8}$ It is of added interest that the lankacidins show good antibacterial

[^0]

Figure 1.
activity against "Shirahagara disease" in rice, suggesting a use in control of this agricultural pathogen. The biological mode of activity is believed to involve the inhibition of protein synthesis, although the exact mechanism is unknown. ${ }^{6}$ The effect on growth of Streptomyces aureus FDA 209 P shows that protein synthesis is completely and immediately inhibited after addition of $10 \mu \mathrm{~g} / \mathrm{mL}$ to the culture medium, but DNA and RNA syntheses were not significantly altered at the same concentration.

The possible role of a biogenetic "Favorskii rearrangement" in the biosynthesis of the lankacidins has been postulated. ${ }^{9}$ Chemical transformations of intact lankacidin antibiotics have been severely limited by their instability to even mild acids and bases. ${ }^{4} 10$ The combination of the potential chemotherapeutic value and the stereochemically complex structure makes the lankacidins attractive synthetic targets, and several reports have appeared describing approaches to their total syntheses. ${ }^{11}$ Herein, we describe in detail the first enantioselective total synthesis of lankacidin C. ${ }^{12}$

[^1]

Figure 2.

Scheme 1

Synthetic Plan

At the outset of the project, we carefully reviewed the literature on the chemical stability of lankacidin C because such information is extremely important for designing a viable synthetic plan for a complex molecule like 1. For our purposes it is sufficient to note that the pyrandione moiety of the lankacidins is reported to undergo ready degradation to the lankacidinol series $\mathbf{2}$ by base (pH above 10), and the macrocycle is cleaved by acid (pH below 3) to aldehyde 3 through an apparent "retro-Mannich" hydrolysis of the bond from $\mathrm{C}(3)$ to the pyrandione $\mathrm{C}(2)$ center (Figure 2). ${ }^{4}$

Since the instability of lankacidin C is the mechanistic consequence of the 1,3 -dicarbonyl array at $C(1)$ and $C(18)$, we postulated that the structure 4 (Scheme 1), in which the $\mathrm{C}(18)$ ketone is reduced and the amino group temporarily protected, would serve as a stable advanced precursor and potential relay toward 1. We elected to carry this portion of the molecule in reduced oxidation state until late in the synthesis.

Construction of the macrocycle was to be achieved by a linchpin closure in which the "acyclic" iodovinyl aldehyde 5 would be cyclized employing the vinylstannane synthon 6 , comprising the missing $\mathbf{C}(9)$ to $\mathbf{C}(11)$ carbons of the chain plus the $\mathrm{C}(11)$ methyl group. We reasoned that this approach would allow us maximum flexibility in the key macrocyclization step. The unidentified functional group (FG) in the synthon 6 could be either a removable electron-withdrawing group or a good leaving group. With FG as an electron-withdrawing group, the bidentate reactivity of 6 would permit intermolecular anion addition of the future $C(9)$ to the $C(8)$ aldehyde of 5 , to be followed by mild, stereospecific, intramolecular Stille coupling ${ }^{13}$ of the vinylstannane $\mathrm{C}(11)$ to the iodomethylene $\mathrm{C}(12)$ of 5 , or we could do the reverse of this two-step sequence. In the case where FG is a leaving group, Stille coupling would form the $\mathrm{C}(11)-\mathrm{C}(12)$ single bond stereospecifically, followed by a Stork-Takahashi cyanohydrin procedure to form the macrocycle. ${ }^{14}$

[^2]Aldehyde 5 was therefore identified as a pivotal synthetic target. We elected to explore a novel strategy whereby the δ-lactone system of 5 would arise from an intramolecular N -to- O acyl migration of the β-lactam derivative 7 under acid catalysis. Analogous intramolecular nucleophilic openings of the β-lactam ring by amino nitrogen, ureido nitrogen, and amide oxygen are well documented in the penicillin series, ${ }^{15}$ and N -to-O acyl migrations under mild conditions are well precedented. ${ }^{16}$ The relief of the ring strain ${ }^{17}$ associated with the β-lactam system and the less negative entropic effect for intramolecular ring closure would provide an adequate driving force for the desired rearrangement. More importantly, model studies in our lab demonstrated the viability of this β-lactam to lactone approach, ${ }^{18}$ as will be detailed later in this paper.

In the interest of convergence, the $\mathrm{C}(2)-\mathrm{C}(18)$ bond in 7 was retrosynthetically cut to divide the molecule into two approximately equal segments. In the synthetic direction, coupling of the β-lactam enolate 8 with the acylating reagent 9 would generate the key $\mathrm{C}(2)$ quaternary center. Acylation would be expected to take place from the less hindered face of the β-lactam 7 away from the bulky side chain at $\mathrm{C}(3)$ to give the desired configuration at the $\mathrm{C}(2)$ chiral center. Further simplification of 8 led to the known β-lactam aldehyde $10,{ }^{19}$ and 9 would in turn be made from the known dithioacetal 11. ${ }^{20}$

Results and Discussions

Synthesis of 4 through Degradation. We recognized from the beginning of our project that the main source of lankacidin C instability, namely, the ultimate $\mathrm{C}(18)$ carbonyl, must be masked until near the end of the synthesis. An important premise underlying this strategy is that we would be able to selectively hydrolyze the cyclic carbamate in the presence of the δ-lactone at the stage of the advanced intermediate 4 and oxidize the resulting free $\mathrm{C}(18)$ hydroxyl group to give the labile pyrandione moiety of the target molecule. The fragile nature of $\mathbf{1}$ also dictated that the choice of protecting group R_{1} will be critical to success. R_{1} should be stable enough to allow the manipulation of $\mathbf{4}$ and removable under mild reaction conditions that the natural product could survive. To test the viability of 4 as our advanced intermediate and a potential relay, we elected to make this compound through the degradation of natural lankacidin C. ${ }^{21}$

Toward this end, natural 1 was silylated under standard conditions ((TBS)Cl, imidazole, DMF) and then reduced with

[^3]
Scheme 2^{a}

${ }^{a}$ Conditions: (a) imidazole, (TBS)Cl, DMF, $\mathrm{rt}, 100 \%$; (b) NaBH_{4}, $\mathrm{MeOH}, \mathrm{rt}, 99 \%$; (c) $1, \mathrm{l}^{\prime}$-carbonyldiimidazole, LiHMDS, THF, -78 ${ }^{\circ} \mathrm{C}, 92 \%$ (from the less polar isomer); (d) $\mathrm{LiOOH}, \mathrm{THF}-\mathrm{H}_{2} \mathrm{O}$ (3:1), 98\%.

Scheme 3^{a}

${ }^{a}$ Conditions: (a) LiHMDS, THF, $-78^{\circ} \mathrm{C}$, and then $\mathrm{RCOCl}, 91 \%$ for $\mathbf{1 6}$ and 85% for $\mathbf{1 7}$; (b) $\mathrm{LiOH}, \mathrm{THF}-\mathrm{H}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}, 30 \%$ for $\mathbf{1 8}$ and 82% for 19 ; (c) Dess-Martin periodinane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 96 \%$ (from 19); (d) $\mathrm{HCOOH}, \mathrm{THF}-\mathrm{H}_{2} \mathrm{O}, \mathrm{rt}, 3 \mathrm{~h}, 82 \%$.

Figure 3.
NaBH_{4} in MeOH to give a $1: 1$ mixture of the $\mathrm{C}\left(2^{\prime}\right)$ epimeric diol 12 (Scheme 2). ${ }^{22}$ The $C\left(2^{\prime}\right)$ stereochemistry of the chromatographically separable less polar isomer was subsequently shown to be S by establishing the identity of this material with our hydroxy amide 19 , prepared from relay 15 by synthesis as described later (Scheme 3). Treatment of this less polar diol with lithium bis(trimethylsilyl)amide and $1, \mathrm{I}^{\prime}$-carbonyldiimidazole gave the biscarbamate 13 in 92% yield. When the more polar diol was subjected to the same reaction conditions, no desired cyclic carbamate but rather a product in 88% yield that was identified as $\mathbf{1 4}$ based on its NMR characteristics was isolated. Selective deacylation of 13 with LiOOH in aqueous THF according to the Evans protocol ${ }^{23}$ gave a 98% yield of the desired tricyclic carbamate 15 as a crystalline solid, mp 186$187^{\circ} \mathrm{C},[\alpha]^{22} \mathrm{D}=-68.3^{\circ}$.

The $\mathrm{C}(18) S$ configuration was assigned on the basis of NOE studies on 15. In particular, irradiation of the $\mathrm{C}(2) \mathrm{Me}$ in 15 revealed a NOE of 8% on the cis $\mathrm{C}(18) \mathrm{H}$ and one of 11% on the cis $\mathrm{C}(3) \mathrm{H}$; irradiation of $\mathrm{C}(18) \mathrm{H}$ gave a NOE of 1.1% on the cis $\mathrm{C}(17) \mathrm{Me}$ and one of 1.7% on the cis $\mathrm{C}(2) \mathrm{Me}$. Further support for the anti stereochemical relationship between the centers at $\mathrm{C}(17)$ and $\mathrm{C}(18)$ was the observed vicinal proton coupling constant of $J_{17,18}=11.0 \mathrm{~Hz}$, indicating an anti axialaxial coupling. X-ray analysis of lankacidin $\mathrm{C} 2^{\prime}-[(p$-bromophenyl)sulphonyl]hydrazone ${ }^{5 \mathrm{a}}$ showed that the pyrandione moiety of the molecule took the conformation shown in Figure 3. It is quite clear that the upper face of the pyrandione ring is completely shielded by the macrocyclic ring. The $\mathrm{C}(18)$

[^4]Scheme 4^{a}

${ }^{a}$ Conditions: (a) (TBS)Cl, imidazole, DMF, 95%; (b) LDA, THF, $-78^{\circ} \mathrm{C}$, MeI, 97%; (c) $\mathrm{HCl}, \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$; (d) PhCOCl, DMAP, pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 76 \%$ (two steps).
carbonyl can only be attacked from below to generate the assigned (S)-carbinol.

Resynthesis of Lankacidin C from Relay 15. To further explore our planned synthetic strategy, the relay conversion of 15 into 1 was examined. Direct alkaline hydrolysis of $\mathbf{1 5}$ gave only lactone cleavage, and then eventual decomposition. It has been documented in the literature that secondary lactams or cyclic carbamates could be hydrolyzed under mild conditions when they were activated by N -acylation. ${ }^{24}$ Therefore, relay 15 was reacted with excess lithium bis(trimethylsilyl)amide, followed by acylation with pyruvic acid chloride as shown in Scheme 3 to give the N-acylcarbamate 16 in 91% yield. Reaction of 16 with 3 equiv of aqueous LiOH at $0^{\circ} \mathrm{C}$ gave in 30% yield the desired hydroxy amide 18 , along with 60% of the exo-ring cleavage product, i.e., the starting relay 15 . We reasoned that a more sterically demanding pyruvic derivative should improve the ratio of the hydrolysis products in favor of the desired endo-ring cleavage. ${ }^{23,24}$ Relay 15 was then acylated with O -acetyl-(S)-lactoyl chloride to form the N -acylcarbamate 17 in 85% yield. Hydrolysis of 17 with aqueous LiOH under the same reaction conditions as those for $\mathbf{1 6}$ gave in 82% yield the hydroxy amide 19 along with 10% of recovered relay 15. Dess-Martin ${ }^{25}$ oxidation of 19 gave 97% of diketone 20 , identical in all respects with the bis(TBS ether) obtained from the direct silylation of natural $\mathbf{1}$ as described before. The delicate desilylation of $\mathbf{2 0}$ failed with all variants of F^{-}or HF , but was finally achieved using aqueous formic acid at $20^{\circ} \mathrm{C}$ for 3 h to produce in 82% yield the target molecule 1, identical in all respects with the natural antibiotic.

Model Studies on the Construction of the Pyrandione Ring System. ${ }^{18}$ Another tactical premise of our synthetic strategy was that a β-lactam having a suitable hydroxyl-bearing side chain α to the carbonyl will undergo rapid N -to- O transacylation with lactam cleavage and formation of a lactone. Before attempting a synthesis of the actual system, we felt that it would be prudent to demonstrate our proposal by a model study. Thus, the TBS ether of the known (hydroxymethyl)azetidinone $21^{19 \mathrm{~b}}$ was monomethylated (LDA, MeI, $-78^{\circ} \mathrm{C}$) to give exclusively the α-methyl adduct 22 as a single diastereomer in 97% yield (Scheme 4). Treatment of 22 with aqueous methanolic HCl overnight followed by benzoylation led to a 76% yield of the known γ-lactone 23^{26} (IR $1770 \mathrm{~cm}^{-1}$).

With the feasibility of our N -to-O acyl migration established, we set out to model the stereochemically correct pyrandione ring system of lankacidin C. It is known in the patent literature that the aldol reactions of 3-alkyl-substituted β-lactams lead to a mixture of all four possible products in roughly equal proportions. ${ }^{27}$ In model studies using the azetidinone 22 and isobutyraldehyde, the aldol reaction led to a 3:1 mixture of

[^5]
Scheme $\mathbf{5}^{\boldsymbol{a}}$

${ }^{\text {a }}$ Conditions: (a) LDA, THF, $-78^{\circ} \mathrm{C}$, then $\mathbf{2 5}, \mathbf{7 9 \%}$; (b) $\mathrm{KEt}_{3} \mathrm{BH}$, $\mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}, 87 \%$; (c) $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}-\mathrm{HCl}$ (90:10:2), 8 equiv, $\mathrm{rt}, 16 \mathrm{~h}$; (d) PhCOCl, DMAP, pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 47 \%$ (two steps).
β-methyl and α-methyl epimers as well as a $1: 1$ mixture of hydroxyl epimers. With these data in hand, we sought another method of controlling the stereochemistry of the key quaternary center. It has been shown that an acylation-reduction sequence can substitute for a single aldol reaction ${ }^{28}$ and this protocol can be highly selective. ${ }^{29}$ With this in mind, the anion of 24 (LDA, $-78^{\circ} \mathrm{C}$) was cannulated into a solution of the chiral acid chloride $\mathbf{2 5}$ at $-78^{\circ} \mathrm{C}$ to form the acylated β-lactam 26 in 79% yield (Scheme 5). Examination of the crude ${ }^{1} \mathrm{H}$ NMR revealed no evidence of another diastereomer. The acylation was expected to take place from the less hindered face of the lactam trans to the TBDPS ether side chain, which was supported by the observation of a $10 \% \mathrm{NOE}$ on the siloxymethylene hydrogens when the quaternary methyl group was irradiated. The origin of this enhanced face selectivity is unclear since one might expect the more reactive acid chloride to give poorer face selectivity than the corresponding aldehyde. Evans has proposed that acid chlorides are sterically more demanding than corresponding aldehydes, ${ }^{30}$ thus increasing the face selectivity on reaction with the chiral azetidinone.

Fortunately, treatment of the acylazetidinone 26 with potassium triethylborohydride in $\mathrm{Et}_{2} \mathrm{O}$ at $0^{\circ} \mathrm{C}$ again gives a single product, 27, in 87% yield. After several unsuccessful attempts, N -to-O acyl migration was observed by treatment of 27 with aqueous methanolic $\mathrm{HCl}\left(\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}-\mathrm{HCl}(90: 10: 2), 8\right.$ equiv, $\mathrm{rt}, 16 \mathrm{~h}$). Benzoylation of the crude amine gave an overall yield of 47% for the amide 28. Irradiation of the quaternary methyl group gave an 8% NOE for the hydrogen on the newly formed carbinol chiral center, leading to our tentative assignment of the reduction stereochemistry in 27 . The origin of this stereoselection is discussed later.

Synthesis of Fragment 9. With the success of our model studies we undertook the synthesis of the fully functionalized $\mathrm{C}(12)-\mathrm{C}(18)$ portion of lankacidin C (Scheme 6). Starting from the known dithioacetal 11, made in four steps (43% overall yield) from D-arabinose, ${ }^{20}$ hydroxyl protection, followed by dithioacetal cleavage, ${ }^{20 \mathrm{~b}}$ produced aldehyde 29 in 70% yield. This underwent addition of the Brown (E)-crotyldiisopinocampheylborane reagent derived from (+)- α-pinene to give 58% of the anticipated adduct $30 .{ }^{31}$ Subsequent protection of the hydroxyl group as its tert-butyldiphenylsilyl ether followed by ozonolysis of the terminal olefin provided the unstable aldehyde 31. The $C(17)$ chiral center underwent facile epimerization during silica gel chromatography. Owing to its fragile nature, crude aldehyde 31 was directly subjected to Lindgren oxidation ${ }^{32}$ followed by reaction with $\mathrm{CH}_{2} \mathrm{~N}_{2}{ }^{33}$ to give ester 32. Difficulties were then encountered in removing the acetonide protecting

[^6]Scheme 6^{a}

${ }^{a}$ Conditions: (a) $\mathrm{NaH},(\mathrm{PMB}) \mathrm{Cl}, \mathrm{DMF}, \mathrm{rt}, 91 \%$; (b) $\mathrm{HgCl} / \mathrm{HgO}$, $\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}(5: 1), 0^{\circ} \mathrm{C}, 77 \%$; (c) chiral borane reagent, $\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}_{2}$, THF, 58%; (d) (TBDPS)Cl, imidazole, DMF, rt, $48 \mathrm{~h}, 84 \%$; (e) O_{3}, Sudan III, $\mathrm{Me}_{2} \mathrm{~S}, \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{CH}_{3} \mathrm{OH}(1: 1),-78{ }^{\circ} \mathrm{C}$; (f) NaClO_{2}, $\mathrm{NaH}_{2} \mathrm{PO}_{4}, \mathrm{MeCN}-\mathrm{DMSO}-\mathrm{H}_{2} \mathrm{O}, \mathrm{rt}, 78 \%$ (two steps); (g) $\mathrm{CH}_{2} \mathrm{~N}_{2}, \mathrm{Et}_{2} \mathrm{O}$, 87%; (h) CuCl_{2}, MeOH , reflux for $1 \mathrm{~h}, 97 \%$; (i) $\mathrm{Pb}(\mathrm{OAc})_{4}, \mathrm{THF}, 0-5$ ${ }^{\circ} \mathrm{C}$; (j) $\mathrm{CrCl}_{2}, \mathrm{CHI}_{3}$, THF, 62% (two steps); (k) $\mathrm{LiOH}, \mathrm{THF}-\mathrm{H}_{2} \mathrm{O}-$ $\mathrm{MeOH}(6: 3: 2), \mathrm{rt}, 12 \mathrm{~h}$; (1) (2-PyS $)_{2}, \mathrm{Ph}_{3} \mathrm{P}, \mathrm{THF}, \mathrm{rt}, 15 \mathrm{~h}, 79 \%$ (two steps).
Scheme 7^{a}

${ }^{a}$ Conditions: (a) $t-\mathrm{BuN}=\mathrm{CHCH}(\mathrm{Me}) \mathrm{SiEt}_{3}$, sec- $\mathrm{BuLi}, \mathrm{Et}_{2} \mathrm{O},-78^{\circ} \mathrm{C}$; silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1 \mathrm{~h}$; AIBN, PhSSPh, benzene, reflux for 7 days, 50%; (b) $t-\mathrm{BuN}=\mathrm{CHCH}_{2} \mathrm{SiEt}_{3}$, sec-BuLi, $\mathrm{Et}_{2} \mathrm{O},-78{ }^{\circ} \mathrm{C}, 78 \%$; (c) $\mathrm{LiBH}_{4}, \mathrm{THF},-30^{\circ} \mathrm{C}, 100 \%$; (d) (TBS)Cl, imidazole, DMF, 85%.
group. Acidic hydrolysis under different reaction conditions ($\mathrm{HCl}, \mathrm{CSA}, \mathrm{pTSA}$) failed to give clean cleavage. After considerable experimentation, the deprotection was finally achieved using 5 equiv of $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in refluxing MeOH for 1 h to give the deprotected diol in 97% yield. ${ }^{34} \mathrm{~Pb}(\mathrm{OAc})_{4}$ cleavage ${ }^{35}$ then gave the unstable noraldehyde 33, directly converted by the Takai method ${ }^{36}$ to the iodoalkene ester 34a in 62% yield. Saponification gave the acid 34b, which was activated as its 2 -thiopyridyl ester $\mathbf{3 4}{ }^{37}$ in good yield (79\% for two steps).

Synthesis of Fragment 8. The $C(1)-C(8)$ segment of lankacidin C was in turn available starting from the known β-lactam 10, ${ }^{19}$ prepared from l-aspartic acid. In our preliminary report, ${ }^{12}$ compound 37 was made by two successive modified Peterson sequences ${ }^{38}$ as shown in Scheme 7. Condensation of β-lactam aldehyde 10 with t - $\mathrm{BuN}=\mathrm{CH}(\mathrm{Me}) \mathrm{SiEt}_{3}$, followed by imine hydrolysis and $(\mathrm{PhS})_{2} / \mathrm{AIBN}$ equilibration of the resulting crude enals, produced the E-unsaturated aldehyde 35 in 50% yield. A second condensation of 35 with t - $\mathrm{BuN}=\mathrm{CHCH}_{2} \mathrm{SiEt}_{3}$ gave on workup a 78% yield of the (E, E)-dienal 36 , which was sequentially reduced with lithium borohydride and O-silylated to gave 37 in 85% yield.

This approach suffered from several drawbacks: (1) the moderate yield and nonstereospecificity of the first SchlessingerPeterson condensation; (2) the long reaction time (7 days in

[^7]
Scheme 8^{a}

${ }^{a}$ Conditions: (a) $(\mathrm{COCl})_{2}$, DMSO, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 86 \%$; (b) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2}$ Me, toluene, $50^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (c) DIBAL-H, THF, -78 to $0^{\circ} \mathrm{C}$; (d) TBSOTf, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 75 \%$ from 39; (e) LDA, THF, $-78^{\circ} \mathrm{C}$, and then MeI, 82\%.

Scheme 9^{a}

${ }^{a}$ Conditions: (a) LDA, THF, $-78^{\circ} \mathrm{C}$, and then $34 \mathrm{c}, 85 \%$; (b) $\mathrm{KEt}_{3} \mathrm{BH}, \mathrm{Et}_{2} \mathrm{O},-78{ }^{\circ} \mathrm{C}, 85 \%$; (c) $\mathrm{Bu}_{4} \mathrm{NF}, \mathrm{THF}, \mathrm{rt}, 2 \mathrm{~h}$; MsOH, $\mathrm{rt}, 2 \mathrm{~h}$; $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{l}, \mathrm{l}^{\prime}$-carbonyldiimidazole, $\mathrm{rt}, 12 \mathrm{~h}, 85 \%$; (d) $\mathrm{HCl}(0.14 \mathrm{M}), \mathrm{H}_{2} \mathrm{O}-$ dioxane (1:1), $\mathrm{rt}, 8 \mathrm{~h}, 70 \%$; (e) Dess-Martin periodinane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 85 \%$; (f) CAN, $\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}, 97 \%$; (g) (TBS)Cl, imidazole, DMF, 79%.
refluxing benzene) required by (PhS) $)_{2}$ /AIBN equilibration of the crude enals; (3) commercial unavailibilities of reagents $t-\mathrm{BuN}=\mathrm{CHCH}\left(\mathrm{SiEt}_{3}\right) \mathrm{CH}_{3}$ and t - $\mathrm{BuN}=\mathrm{CHCH}_{2} \mathrm{SiEt}_{3}$. As a result, an alternative and more expedient route to 37 was developed (Scheme 8). Again starting from β-lactam 10, alcohol 38 was conveniently made according to the reported procedure. ${ }^{11 e}$ Swern oxidation gave in 86% yield the unsaturated aldehyde 39 , which was reacted with commercial methyl (triphenylphosphoranylidene)acetate (toluene, $50^{\circ} \mathrm{C}, 1 \mathrm{~h}$) to produce stereospecifically the E, E-unsaturated ester $\mathbf{4 0}$. Reduction of 40 with diisobutylaluminum hydride, followed by reaction with excess tert-butyldimethylsilyl trifluoromethanesulfonate, generated 37 in 75% overall yield from 39 . Finally, C-methylation (LDA, MeI, $-78^{\circ} \mathrm{C}$) produced the $\mathrm{C}(1)-\mathrm{C}(8)$ synthon 41 in 82% yield as a single diastereomer.
Coupling and Lactone Formation. With syntheses of $\mathrm{C}(12)-\mathrm{C}(18)$ and $\mathrm{C}(1)-\mathrm{C}(8)$ fragments 34 c and 41 in hand, their coupling was undertaken (Scheme 9). Treatment of a tetrahydrofuran solution of lactam 41 with lithium diisopropylamide (LDA) at $-78^{\circ} \mathrm{C}$ resulted in the formation of the lithium enolate. Subsequent addition of a solution of the 2 -thiopyridyl ester 34c followed by stirring at $-78^{\circ} \mathrm{C}$ for 10 min afforded the desired β-ketolactam $\mathbf{4 2}$ in 85% yield as a single diastereomer. ${ }^{39}$ Once again we found that reduction of $\mathbf{4 2}$ by potassium triethylborohydride in $\mathrm{Et}_{2} \mathrm{O}$ at $-78{ }^{\circ} \mathrm{C}$ produced the single carbinol 43 with the desired stereochemical outcome. Deprotection, N -to-O transacylation, and subsequent protection of the hydroxy amine were achieved in a "one-pot" fashion as follows. All three silyl protecting groups were first removed with tetrabutylammonium fluoride. Subsequent addition of meth-

[^8]

Figure 4.
anesulfonic acid to the reaction mixture catalyzed the N -to- O acyl migration. After 2 h at room temperature, triethylamine was added to quench the acid, followed by 1,1 -carbonyldiimidazole trapping to yield 85% of the bicyclic lactone carbamate 44. Selective hydrolysis followed by Dess-Martin oxidation gave the conjugated dienal 45 in 60% overall yield. With the sensitive 4,6-diene now protected by the $\mathrm{C}(8)$ aldehyde, ceric ammonium nitrate (CAN) oxidative scission of the p-methoxybenzyl (PMB) group ${ }^{40}$ and subsequent silylation gave the stable iodo aldehyde 46 in 76% yield.

The assignment of the $C(18) S$ stereochemistry of 43 was corroborated by high-field NOE measurements on the derived carbamate 44 as well as on derivatives prepared subsequently. In particular, irradiation of the $\mathrm{C}(2) \mathrm{Me}$ in 44 gave an NOE of 7% on the cis $\mathrm{C}(18) \mathrm{H}$ and one of 9% on the cis $\mathrm{C}(3) \mathrm{H}$. Together with the observed vicinal proton coupling constant $J_{17,18}$ of 9.4 Hz , the above data indicate a half-chair conformation for the lactone ring in 44 . These findings were relevant as well to 45, 46, 54-56, and 15.

This $\mathrm{C}(18) S$ assignment implies that $\mathrm{KEt}_{3} \mathrm{BH}-\mathrm{Et}_{2} \mathrm{O}$ reduction of our β-ketolactam 42 takes a steric course opposite that observed for a structurally related thienamycin precursor lacking the angular methyl substituent. ${ }^{41}$ Bouffard postulated a mechanism suggesting that a syn-chelated conformer A was involved in their stereoselective reduction of a β-ketolactam system $\left(\mathrm{R}_{1}\right.$ $=\mathrm{H}, \mathrm{R}_{2}=\mathrm{CH}_{3}$) (Figure 4). Preferred attack of the borohydride anion on the β-face of the ketone carbonyl generates the (R) carbinol. In our system where R_{1} is the methyl group and R_{2} is the long side chain, we tentatively concluded that the steric interference between the bulky R_{2} and the β-lactam ring disfavored conformer A , driving the conformational equilibrium toward conformer B in which β-face attack on the ketone carbonyl generated the (S)-carbinol 43. Attack on the face of the ketone carbonyl opposite that indicated is disfavored in both cases by steric interference due to H_{a} and electrostatic repulsion between the negatively charged borohydride anion and the lone pair electrons of the lactam nitrogen. ${ }^{41}$ When the $\mathrm{KEt}_{3} \mathrm{BH}$ reduction of 42 was carried out in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ instead of $\mathrm{Et}_{2} \mathrm{O}$, a $4: 1$ mixture of (S) - to (R)-carbinols was obtained. Consistent with the above mechanism, the poorer cationic solvating ability of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ relative to $\mathrm{Et}_{2} \mathrm{O}$ should be expected to shift the conformational equilibrium to the syn-chelated conformer A which would give R product on β-face reduction.

Macrocyclization and Synthesis of Relay 4. With the $\mathrm{C}(12)$ through $C(8)$ core of the target 1 correctly arrayed in 46 , we addressed the identity of linch-pin synthon 6 . We first designed this to be vinylstannane-sulfone 48, prepared by us from the known alcohol 47^{42} (Scheme 10). The imidazolyl sulfone functional group was chosen in the hope that it would direct the nucleophilicity of its anion to the α-position. ${ }^{43}$ In model studies, regiospecific anion addition of 48 to cinnamaldehyde produced in 86% yield the adduct 49 as a statistical mixture of diastereomers. Subsequent Stille coupling of 49 to the acyclic

[^9]
Scheme 10^{a}

${ }^{a}$ Conditions: (a) $\mathrm{NCS}, \mathrm{Me}_{2} \mathrm{~S}$; (b) imidazolyl sulfide, $\mathrm{Et}_{3} \mathrm{~N}$; (c) mCPBA, 54% overall; (d) NaHMDS, THF, $-78{ }^{\circ} \mathrm{C}$, and then cinnamaldehyde, 86%; (e) $5 \% \mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}, \mathbf{3 4 a}, \mathrm{DMF}, \mathrm{rt}, 2 \mathrm{~h}, 87 \%$; (f) $5 \% \mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}, 1.0$ equiv of $\mathrm{LiBH}_{4}, \mathrm{THF}, 0^{\circ} \mathrm{C}, 5 \mathrm{~min}, 80 \%$.

Scheme 11^{a}

${ }^{a}$ Conditions: (a) $5 \% \mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}$, DMF, rt, 92%; (b) LiHMDS, (TMS)Cl, THF, $-78^{\circ} \mathrm{C}$; AcOH, aqueous $\mathrm{THF}, 63 \%$.
iodovinyl ester $\mathbf{3 4}$ a efficiently yielded $\mathbf{5 0}$ (87%). As important, moreover, was our finding that, in the presence of PdCl_{2} and LiBH_{4} at $0{ }^{\circ} \mathrm{C},{ }^{44} 50$ was chemoselectively desulfurized to yield product 51, in which the three double bonds and the ester were retained with no $(E) /(Z)$-alkene isomerization.
With the success of our model studies, we applied synthon 48 to the iodo aldehyde 46 (Scheme 11). Stille coupling of 48 and 46 gave in 92% yield the tetraenal 52 . Subsequent intramolecular anion addition of $\mathrm{C}(9)$ to $\mathrm{C}(8)$ aldehyde successfully formed the macrocycle product 53 in 57% yield as a mixture of $C(8)$ epimeric alcohols, whose stereochemistry could not be determined by spectrometric methods. The addition of sulfone anion to aldehyde was a capricious process due to the potential equilibrium between product alkoxy sulfone and starting material. TMS trapping of the initial aldol product followed by acetic acid deprotection was found essential to drive the reaction to completion. Unfortunately, subsequent attempts to desulfurize 53, including the Inomata method that worked quite well for our model system, only led to decomposition. In an attempt to circumvent this problem, we tried to oxidize the $C(8)$ hydroxyl group to the carbonyl group before desulfurization. However, Dess-Martin oxidation of $\mathbf{5 3}$ only gave an 8,9diketone product in low yield (20%). ${ }^{45}$ The frustrating results of the desulfurization and the lack of stereocontrol at the C(8) center prompted us to change our tactics.
We turned our attention to the feasibility of Stork-Takahashi cyanohydrin chemistry. Despite its success in a number of natural product syntheses, ${ }^{46}$ this method has never been applied to a highly functionalized system like lankacidin C. Stille coupling of iodo aldehyde 46 with the stannane-alcohol 47 gave in 90% yield the carbinol 54a, which was converted to the chloride 54b quantitatively by the Collington-Meyers procedure ${ }^{47}$ (Scheme 12). The chloride 54b was reacted with

[^10]
Scheme $\mathbf{1 2}^{a}$

${ }^{a}$ Conditions: (a) $5 \% \mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}, \mathrm{DMF}, \mathrm{rt}, 90 \%$; (b) $\mathrm{MsCl}, 2,6-$ lutidine, LiCl, DMF, $0^{\circ} \mathrm{C}$; (c) (TMS)CN, catalytic $\mathrm{KCN} / 18$-crown- 6 complex; (d) LiHMDS, THF, $-78^{\circ} \mathrm{C}$; AcOH, THF- $\mathrm{H}_{2} \mathrm{O} ; 1 \%$ aqueous $\mathrm{NaOH}, 61 \%$ from 54a; (e) $\mathrm{BH}_{3}-\mathrm{THF}, 5 \%$ CBS reagent 57 , THF, -10 ${ }^{\circ} \mathrm{C}, 89 \%$; (f) (TBS)Cl, imidazole, DMF, rt, 95%.
trimethylsilyl cyanide in the presence of a catalytic amount of KCN/18-crown-6 complex to produce the Stork-Takahashi intermediate 55. The macrocyclization was immediately carried out by treating a dilute solution of 55 in tetrahydrofuran (0.02 M) with excess lithium bis(trimethylsilyl)amide at $-78^{\circ} \mathrm{C}$ for 30 min . After mild hydrolysis, we were gratified to obtain the desired macrocycle 56, mp $155-157^{\circ}$, in 61% yield from 54a.
The critical stereospecific reduction of $\mathbf{C}(8)$ ketone was now examined. The general method for 1,2 -reduction of conjugated ketones developed by Luche, ${ }^{48}$ which utilizes a combination of NaBH_{4} and CeCl_{3} in methanol, gave a complex mixture in our system. L-Selectride reduction gave a $1: 1$ mixture of the $1,4-$ reduction product and the epimeric 1,2 -reduction products, with the undesired 8α-carbinol predominating. ${ }^{49}$ The stereospecific reduction of the $\mathrm{C}(8)$ ketone was finally achieved by use of the (R)-oxazaborolidine-catalyzed CBS borane method. ${ }^{50}$ This method was chosen on the basis of its excellent enantioselectivities, catalytic nature, short reaction time, high selectivity for 1,2 -reduction of conjugated ketones, ${ }^{50}$ a and documented success in the synthesis of MK-0417. ${ }^{\text {.0b }}$ Treatment of a solution of 56 in tetrahydrofuran with $\mathrm{BH}_{3} \cdot \mathrm{THF}\left(0.67\right.$ equiv) at $-10^{\circ} \mathrm{C}$ for 30 min in the presence of $10 \mathrm{~mol} \%(R)$-CBS catalyst 57 gave a $10: 1$ mixture of 8β - to 8α-carbinols in 89% yield. ${ }^{49}$ When the ($(\mathcal{S}$-CBS catalyst was used, the 8α-carbinol was produced exclusively in 91% yield. ${ }^{49}$ Silylation of the desired 8β-carbinol ((TBS)CI, imidazole, DMF) produced in 96% yield a crystalline tricyclic lactone carbamate, mp $187-188^{\circ} \mathrm{C},[\alpha]^{22} \mathrm{D}=-69.9^{\circ}$, having a mixed melting point, TLC properties, ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, IR, and FAB-MS experimentally indistinguishable from those of authentic 15 prepared from lankacidin C .
Since we had already carried out the relay conversion of $\mathbf{1 5}$ to 1 , our synthesis of 15 thus completes the first total synthesis of lankacidin C.

Conclusion

A convergent, stereoselective synthesis of the macrolide antitumor antibiotic lankacidin C is described. The most noteworthy aspect of the synthesis has been the successful use

[^11]of the novel intramolecular $\mathrm{N} \rightarrow \mathrm{O}$ acyl migration strategy to construct the δ-lactone 44 from the β-lactam 43. This paper also provides a good illustration for application of the StorkTakahashi cyanohydrin methodology within a highly functionalized system. Our synthetic approach to lankacidin C allows easy access to other lankacidin family members by simple manipulation of protecting groups. Degradation chemistry on lankacidin C shown in this paper may lead to novel lankacidin derivatives with higher biological reactivities worthy of clinical development.

Experimental Section

General Procedures. Unless noted otherwise, all starting materials were obtained from commercial suppliers and were used without further purification. Tetrahydrofuran and ethyl ether were distilled from sodium benzophenone ketyl. N, N-Dimethylformamide, 2,6-lutidine, and dimethyl sulfoxide were distilled under reduced pressure from calcium hydride and stored over $4 \AA$ molecular sieves under argon. Dicholoromethane, diisopropylamine, triethylamine, benzene, and toluene were freshly distilled from calcium hydride. Oxalyl chloride was distilled at 760 Torr immediately prior to use. All reactions involving air- or moisture-sensitive reactants were performed in flame-dried glassware fitted with rubber septa under a positive pressure of dry nitrogen or argon. Flash chromatography was performed using silica gel 60 ($230-400$ mesh) with the indicated solvent. Thin-layer chromatography was performed using $250 \mu \mathrm{~m}$ (analytical) or $500 \mu \mathrm{~m}$ (preparative) silica gel (230-400 mesh) plates impregnated with a fluorescent indicator (254 nm). Melting points are uncorrected. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded with a GE QE-300 (300 $\mathrm{MHz}) \mathrm{NMR}$ spectrometer as solutions in deuteriochloroform $\left(\mathrm{CDCl}_{3}\right)$. Chemical shifts are expressed in parts per million (ppm, δ) downfield from tetramethylsilane and are referenced to the deuterated solvent $\left(\mathrm{CHCl}_{3}, \delta 7.27\right)$. Data are presented as follows: chemical shift, multiplicity (s , singlet; d, doublet; t , triplet; q , quartet; m, multiplet and/or multiple resonances), coupling constant in hertz (Hz), integration. IR spectra were recorded as solutions in chloroform $\left(\mathrm{CHCl}_{3}\right)$ and reported in wavenumbers $\left(\mathrm{cm}^{-1}\right)$.

2-Deoxy-3-O-[(4-methoxyphenyl)methyl]-4,5-O-(1-methyleth-ylidene)-D-erythro-pentose (29). To a solution of $8.0 \mathrm{~g}(28.6 \mathrm{mmol})$ of alcohol 11^{20} in 400 mL of DMF was added $2.3 \mathrm{~g}(57.5 \mathrm{mmol})$ of $\mathrm{NaH}(60 \%$ mineral oil dispersion) in one portion, and the resulting suspension was stirred at ambient temperature for 3 h . The reaction was cooled to $0^{\circ} \mathrm{C}$, and $5.35 \mathrm{~g}(34.3 \mathrm{mmol})$ of p-methoxybenzyl bromide was added dropwise over a period of 15 min . The reaction was warmed to ambient temperature and stirred for 45 min . The mixture was poured into 800 mL of cold water and extracted with ethyl acetate ($3 \times 400 \mathrm{~mL}$). The combined extracts were washed with water $(4 \times 150 \mathrm{~mL})$ and brine (200 mL), dried over MgSO_{4}, filtered, and concentrated in vacuo. The pale yellow residue was purified by flash chromatography ($8 \% \mathrm{EtOAc} /$ hexane) to give $10.37 \mathrm{~g}(91 \%)$ of the PMB ether as a clear oil: $[\alpha]^{25}{ }_{\mathrm{D}}-14.4^{\circ}(c 3.2, \mathrm{MeOH})$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 2940$, $1630,1520,1225,1070 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.25(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.57(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-3.88(\mathrm{~m}, 5 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.70-$ $2.55(\mathrm{q}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.01-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}$, 3 H), $1.24(\mathrm{t}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.2$, $130.6,129.4,113.7,108.9,78.4,76.4,73.0,65.9,55.0,47.6,38.8,26.4$, 25.2, 24.2, 23.3, 14.5, 14.4. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{~S}_{2}: \mathrm{C}, 59.96$; H, 8.05. Found: C, 59.80; H, 8.01.

To a solution of $1.0 \mathrm{~g}(2.50 \mathrm{mmol})$ of the PMB ether in 35 mL of acetonitrile and 7 mL of water was added $1.15 \mathrm{~g}(11.5 \mathrm{mmol})$ of calcium carbonate and $2.71 \mathrm{~g}(9.98 \mathrm{mmol})$ of mercuric chloride. The heterogeneous reaction mixture was stirred at ambient temperature for 50 min and filtered through a pad of Celite with acetonitrile. The filtrate was concentrated in vacuo, and the residue was dissolved in 150 mL of ether. This ether solution was washed with 1 M KI solution ($4 \times$ 15 mL) and brine (30 mL), dried over MgSO_{4}, filtered, and concentrated in vacuo. Purification by flash chromatography (10% ethanol/hexane) gave $0.57 \mathrm{~g}(77 \%)$ of aldehyde 29 as a clear oil: $[\alpha]^{25} \mathrm{D}+15.2^{\circ}$ (c $1.02, \mathrm{CHCl}_{3}$) $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 3000,1725,1615,1510,1380,1225,1070$,
$850 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.81(\mathrm{~s}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.55(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.53$ (d, $J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~m}, 2 \mathrm{H}), 3.96(\mathrm{dd}, J=5.5,5.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.83(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.72(\mathrm{dd}, J=5.5,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.41(\mathrm{~s}$, $3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.3,159.3,129.8$, $129.5,113.7,109.4,77.2,74.9,72.0,66.6,55.0,45.6,26.4,25.0$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{5}: \mathrm{C}, 65.28 ; \mathrm{H}, 7.53$. Found: C, 65.54; $\mathrm{H}, 7.49$.
[4R-[4R*[$\left.\left.\left.\alpha R^{*}\left(S^{*}\right), \gamma S^{*}\right]\right]\right]-\gamma-[(4-M e t h o x y p h e n y l)$ methoxy $]-2,2-$ dimethyl- α-(1-methyl-2-propenyl)-1,3-dioxolane-4-propanol (30). To a solution of $1.12 \mathrm{~g}(9.51 \mathrm{mmol})$ of potassium tert-butoxide in 9.0 mL of THF at $-78^{\circ} \mathrm{C}$ was added $5.0 \mathrm{~mL}(55 \mathrm{mmol})$ of trans-2-butene. A 3.88 mL ($9.51 \mathrm{mmol}, 2.45 \mathrm{M}$ in hexane) sample of n-butyllithium was introduced at such a rate that the internal temperature was kept below $-65^{\circ} \mathrm{C}$. The reaction was allowed to warm to $-50^{\circ} \mathrm{C}$ and stirred at that temperature for 15 min before it was cooled to $-78^{\circ} \mathrm{C} .(+)-B$ Methoxydiisopinocampheylborane ($9.51 \mathrm{mmol}, 1.0 \mathrm{M}$ in ethyl ether) was introduced at such a rate that the internal temperature was kept below $-65^{\circ} \mathrm{C}$. After the reaction was stirred for 10 min at $-78^{\circ} \mathrm{C}$, $1.75 \mathrm{~g}(12.36 \mathrm{mmol})$ of $\mathrm{BF}_{3}-\mathrm{Et}_{2} \mathrm{O}$ was added slowly, followed by a solution of $2.91 \mathrm{~g}(9.89 \mathrm{mmol})$ of aldehyde 29 in 11 mL of THF. The cloudy reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1.5 h . A 3 M NaOH aqueous solution (3.6 mL) was added to quench the reaction, and the mixture was allowed to warm to the ambient temperature. A 1.7 mL sample of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ aqueous solution was added carefully, and the mixture was stirred until the gas evolution ceased. The mixture was poured into 200 mL of ethyl ether and washed with water (2×10 mL) and brine (20 mL). The ether layer was dried over MgSO_{4}, filtered, and concentrated in vacuo. Purification by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 3 \% \mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, and finally $\left.10 \% \mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ gave 2.03 g (58%) of the alcohol 30 as a clear oil: $[\alpha]^{25}-4.3^{\circ}$ (c 2.37, MeOH); IR (CHCl_{3}) $3480,2980,1610,1510,1375,1225,1065,910 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 5.77(\mathrm{~m}, 1 \mathrm{H}), 5.05(\mathrm{~m}, 2 \mathrm{H}), 4.72(\mathrm{~d}, 11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}$, $11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~m}, 1 \mathrm{H}), 3.91-4.05(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}$, $3 \mathrm{H}), 3.74(\mathrm{~m}, 1 \mathrm{H}), 3.08(\mathrm{~d}, 1 \mathrm{H},-\mathrm{OH}), 2.23(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.69(\mathrm{~m}$, $2 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.3,140.2,130.0,129.6,115.3,113.8,109.0$, $78.2,78.0,73.0,72.5,65.8,55.1,43.8,35.3,26.4,25.1,15.6$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{5}: \mathrm{C}, 68.54 ; \mathrm{H}, 8.63$. Found: C, $68.40 ; \mathrm{H}, 8.65$.
[4R-[4R*[S* $\left.\left.\left.\left.1 R^{*}, 2 S^{*}\right)\right]\right]\right]-[[1-[2$-(2,2-Dimethyl-1,3-dioxolan-4-yl)-2-[(4-methoxyphenyl)methoxy]ethyl]-2-methyl-3-butenyl]oxy](1,1dimethylethyl)diphenylsilane (30a). To a solution of 9.0 g (25.68 mmol) of alcohol $\mathbf{3 0}$ in 25 mL of DMF at ambient temperature were added $8.7 \mathrm{~g}(128 \mathrm{mmol})$ of imidazole and $17.65 \mathrm{~g}(64.22 \mathrm{mmol})$ of (TBDPS)Cl. After 48 h , the solution was poured into 600 mL of $\mathrm{Et}_{2} \mathrm{O}$ and washed with water $(4 \times 100 \mathrm{~mL})$ and brine $(100 \mathrm{~mL})$. The ether layer was dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. Purification by flash chromatography (6% ethanol/hexane) gave $12.68 \mathrm{~g}(84 \%)$ of 30 a as a clear oil: $[\alpha]^{25} \mathrm{D}-13.6^{\circ}$ (c 3.66, MeOH); IR (CHCl_{3}) 2940, 1610, 1510, 1225, 1110, 1065, 1035; 'H NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72-7.66(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.33(\mathrm{~m}, 6 \mathrm{H}), 7.04(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, \mathrm{lH}), 6.80(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{~m}, 1 \mathrm{H}), 5.02(\mathrm{~m}, 1 \mathrm{H})$, $4.88(\mathrm{~m}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.90-3.85(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~m}, 1 \mathrm{H}), 3.54(\mathrm{~m}$, $1 \mathrm{H}), 2.06(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.07$ (s, 9 H), $0.92(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{48} \mathrm{O}_{5} \mathrm{Si}: \mathrm{C}$, 73.43; H, 8.22. Found: C, 73.52; H, 8.15 .

2,4-Dideoxy-3-O-[(1,1-dimethylethyl)diphenylsilyl]-5-O-[(4-meth-oxyphenyl)methyl]-2-methyl-6,7-O-(1-methylethylidene)-D-allo-heptose (31). To a solution of $6.3 \mathrm{~g}(10.7 \mathrm{mmol})$ of $\mathbf{3 0 a}$ in 60 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 60 mL of MeOH was added $10 \mathrm{mg}(0.03 \mathrm{mmol})$ of Sudan III dye. The solution was cooled to $-78^{\circ} \mathrm{C}$, and a stream of oxygenozone was bubbled into the red-colored reaction mixture until the color turned yellow. The solution was immediately flushed with argon to remove excess ozone, and $7.6 \mathrm{~g}(105 \mathrm{mmol})$ of dimethyl sulfide was added at $-78^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to ambient temperature slowly and concentrated in vacuo to give 6.9 g of crude aldehyde 31, which was used immediately in the subsequent reaction without further purification because of partial racemization during silica gel chromatography: IR $\left(\mathrm{CHCl}_{3}\right) 2950,1720,1610,1510$, $1370,1225,1110,1070,1030 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $9.69(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.64(\mathrm{~m}, 4 \mathrm{H}), 7.50-7.35(\mathrm{~m}, 6 \mathrm{H})$,
$7.02(\mathrm{~d} J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{~d} J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.46(\mathrm{~d}, J=11.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{~m}, 1 \mathrm{H}), 3.80$ $(\mathrm{s}, 3 \mathrm{H}), 3.84(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{~m}, 1 \mathrm{H}), 3.58(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{~m}, 1 \mathrm{H}), 1.73$ $(\mathrm{m}, 2 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}), 0.98(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, 3H).
2,4-Dideoxy-3-O-[(1,1-dimethylethyl)diphenylsilyl]-5-O-[(4-meth-oxyphenyl)methyl]-2-methyl-6,7-O-(1-methylethylidene)-D-allo-heptaldonic Acid Methyl Ester (32). To a solution of $6.9 \mathrm{~g}(11.7 \mathrm{mmol})$ of crude aldehyde 31 in 30 mL of MeCN and 10 mL of DMSO were added $0.43 \mathrm{~g}(3.5 \mathrm{mmol})$ of $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ as a solution in 5 mL of water and $2.35 \mathrm{~g}(19.9 \mathrm{mmol})$ of $\mathrm{NaClO}_{2}(80 \%)$ as a solution in 15 mL of water. The reaction mixture was stirred at ambient temperature for 2 h and poured into 250 mL of EtOAc and 50 mL of water. The organic layer was washed with 30 mL each of water and brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. Purification by flash chromatography ($5-15 \%$ ethanol/hexane) gave $5.65 \mathrm{~g}(78 \%$, two steps) of the acid as a white foam: $[\alpha]^{25} \mathrm{D}-19.5^{\circ}(c 2.63, \mathrm{MeOH})$; IR (CHCl_{3}) 2940, 1750, 1710, 1615, 1375, 1225, 1110, $1070 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76-7.62(\mathrm{~m}, 4 \mathrm{H}), 7.49-7.35(\mathrm{~m}, 4 \mathrm{H})$, $7.03(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.49(\mathrm{~d}, J=11.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{~m}, 1 \mathrm{H}), 3.80$ $(\mathrm{s}, 3 \mathrm{H}), 3.75(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{~m}, 1 \mathrm{H}), 1.72$ $(\mathrm{m}, 2 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}), 1.05(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, 3 H) ${ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.9,158.8,135.8,135.7,133.4$, 132.6, 130.3, 129.6, 129.5, 129.1, 127.4, 127.3, 113.4, 108.7, 77.7, $73.9,72.3,71.8,64.7,54.9,43.7,36.0,26.8,26.0,24.9,19.1,13.2$. Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{46} \mathrm{O}_{7} \mathrm{Si}: \mathrm{C}, 69.27 ; \mathrm{H}, 7.64$. Found: C, $69.05, \mathrm{H}$, 7.25 .

To a solution of $6.0 \mathrm{~g}(58 \mathrm{mmol})$ of N-nitrosomethylurea in 150 mL of $\mathrm{Et}_{2} \mathrm{O}$ at $0^{\circ} \mathrm{C}$ was carefully added 55 mL of a 3.0 M NaOH aqueous solution. After the addition was complete, the ether phase was aspirated with a smooth-tipped Pasteur pipet and introduced dropwise into a solution of $10.2 \mathrm{~g}(16.8 \mathrm{mmol})$ of the above acid in 100 mL of $\mathrm{Et}_{2} \mathrm{O}$ until the yellow color persisted. The reaction mixture was stirred for 15 min at $0^{\circ} \mathrm{C}$, and anhydrous MgSO_{4} was added to destroy the excess diazomethane. The mixture was filtered and concentrated in vacuo. Purification by flash chromatography (25% $\mathrm{Et}_{2} \mathrm{O} /$ hexane) gave $9.11 \mathrm{~g}(87 \%)$ of the ester 32 as a clear oil: $[\alpha]^{25} \mathrm{D}$ -20.4° (c $2.33, \mathrm{MeOH}$); IR $\left(\mathrm{CHCl}_{3}\right) 2920,1730,1610,1510,1460$, $1425,1225,1110 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69-7.65(\mathrm{~m}$, $4 \mathrm{H}), 7.44-7.35(\mathrm{~m}, 6 \mathrm{H}), 7.07(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.10$ $(\mathrm{m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.75-3.63(\mathrm{~m}, 4 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 2.53(\mathrm{~m}, 1 \mathrm{H})$, $1.62(\mathrm{~m}, 2 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}), 1.00(\mathrm{~d}, \mathrm{~J}=7.0$ $\mathrm{Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.3,159.1,136.1,134.2$, 133.5, 130.7, 130.0, 129.7, 129.3, 127.6, 127.5, 113.7, 108.9, 78.3, $74.3,72.6,72.2,64.9,55.2,51.3,44.1,36.0,27.1,26.3,25.3,19.4$, 13.0. Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{48} \mathrm{O}_{7} \mathrm{Si}: \mathrm{C}, 69.64 ; \mathrm{H}, 7.79$. Found: C, 69.32; H, 8.03.

3,5-Dideoxy-4-O-[(1,1-dimethylethyl)diphenylsilyl]-2-O-[(4-meth-oxyphenyl)methyl]-5-methyl-L-ribo-hexuronic Acid Methyl Ester (33). To a solution of $1.01 \mathrm{~g}(1.63 \mathrm{mmol})$ of 32 in 30 mL of MeOH was added $1.52 \mathrm{~g}(8.9 \mathrm{mmol})$ of $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, and the green reaction mixture was refluxed for 1 h . The reaction was cooled to ambient temperature, and 2 g of NaHCO_{3} was added. After the evolution of carbon dioxide ceased, 15 mL of water was added and the resulting blue precipitate was filtered off through a pad of Celite with EtOAc. The filtrate was washed with brine (50 mL), dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. Purification by flash chromatography (6% ethanol/hexane) gave $0.92 \mathrm{~g}(97 \%)$ of the expected diol as a clear oil: $[\alpha]^{25}{ }_{\mathrm{D}}-13.5^{\circ}$ (c $2.18, \mathrm{MeOH}$); IR $\left(\mathrm{CHCl}_{3}\right) 3445$, 2940, 1725, 1610, 1510, 1460, 1225, $1110 \mathrm{~cm}^{-1}$; ' H NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.72-7.68(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.37(\mathrm{~m}, 6 \mathrm{H}), 7.07(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}$, $J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.57-3.44$ $(\mathrm{m}, 4 \mathrm{H}), 2.60(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}$, secondary -OH$)$, $2.21(\mathrm{~m}, 1 \mathrm{H}$, primary -OH$), 1.81-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.10(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, 3 H), 1.07 (s, 9 H); ${ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.5,159.2,136.0$, 133.8, 133.5, 130.2, 129.8, 129.4, 127.6, 127.5, 113.5, 76.7,73.1, 72.5, $71.3,62.9,55.1,51.4,44.1,35.4,27.0,19.4,12.6$. Anal. Caled for $\mathrm{C}_{33} \mathrm{H}_{44} \mathrm{O}_{7} \mathrm{Si}: \mathrm{C}, 68.24 ; \mathrm{H}, 7.64$. Found: C, $68.27 ; \mathrm{H}, 7.86$.

To a solution of $0.92 \mathrm{~g}(1.58 \mathrm{mmol})$ of the diol in 15 mL of THF at
$0^{\circ} \mathrm{C}$ was added $\mathrm{lg}(2.14 \mathrm{mmol})$ of $\mathrm{Pb}(\mathrm{OAc})_{4}$ as a solution in 15 mL of THF. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 40 min , and ethylene glycol was added to destroy the excess $\mathrm{Pb}(\mathrm{OAc})_{4}$. After 10 min , the mixture was filtered through a pad of Celite with EtOAc. The filtrate was washed with saturated aqueous NaHCO_{3} and brine (20 mL each), dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo to give 1.02 g of the crude aldehyde 33 as a yellow oil, which was used without further purification because of partial racemization during silica gel chromatography: IR $\left(\mathrm{CHCl}_{3}\right) 2940,1730,1610,1510,1460,1425$, $1225,1110 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.18(\mathrm{~d}, J=0.96$ $\mathrm{Hz}, 1 \mathrm{H}), 7.70-7.66(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.36(\mathrm{~m}, 6 \mathrm{H}), 7.15(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J$ $=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{~s}$, $3 \mathrm{H}), 2.65(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.07(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.03$ (s, 9 H); ${ }^{13} \mathrm{C}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 202.1,174.5,159.5,136.0$, 133.7, 133.2, 129.7, 129.6, 129.5, 129.3, 129.2, 127.7, 113.9, 113.8 , $113.7,79.5,71.8,71.7,55.2,51.4,44.5,33.6,27.0,19.4,12.6$.
[$\left.2 R-\left(2 R^{*}, 3 R^{*}, 5 S^{*}, 6 E\right)\right] \cdot 3-[[(1,1$-Dimethylethyl)diphenylsilyl]oxy]-7-iodo-5-[(4-methoxyphenyl)methoxy]-2-methyl-6-heptenoic Acid Methyl Ester (34a). To a suspension of $1.2 \mathrm{~g}(9.75 \mathrm{mmol})$ of CrCl_{2} in 15 mL of THF were added $1.02 \mathrm{~g}(1.58 \mathrm{mmol})$ of the crude aldehyde 33 in 10 mL of THF and $1.25 \mathrm{~g}(3.17 \mathrm{mmol})$ of CHI_{3}. The reaction was sonicated for 1 h and quenched with 5 mL of water. The mixture was poured into 100 mL of $\mathrm{Et}_{2} \mathrm{O}$ and 50 mL of a $10 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ aqueous solution. The organic layer was washed with brine (30 mL), dried over MgSO_{4}, filtered, and concentrated in vacuo. Purification by flash chromatography ($6 \% \mathrm{EtOAc} /$ hexane) gave 0.7 g (62% two steps) of 34a as a clear oil: $[\alpha]^{25}{ }_{\mathrm{D}}-78.6^{\circ}$ (c 1.57, MeOH); IR (CHCl_{3}) 2950, $1730,1610,1510,1460,1430,1225,1110 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.69-7.61(\mathrm{~m}, 4 \mathrm{H}), 7.50-7.35(\mathrm{~m}, 6 \mathrm{H}), 7.10(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{dd}, J=16.0,7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.33(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~d}, J=$ $11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 3.64-3.53(\mathrm{~m}$, $1 \mathrm{H}), 2.75(\mathrm{~m}, 1 \mathrm{H}), 1.88(\mathrm{~m}, 1 \mathrm{H}), 1.60(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, 3 H), 1.01 ($\mathrm{s}, 9 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.3,159.2,146.0$, $136.1,136.0,133.7,133.5,130.0,129.9,129.3,127.8,127.7,127.5$, $113.8,79.3,77.8,71.3,69.8,55.2,51.6,45.4,39.0,27.1,26.9,11.6$. Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{4} \mathrm{IO}_{5} \mathrm{Si}: \mathrm{C}, 58.92$; $\mathrm{H}, 6.14$. Found: $\mathrm{C}, 59.14$; H, 6.24 .
[$\left.2 R-\left(2 R^{*}, 3 R^{*}, 5 S^{*}, 6 E\right)\right] \cdot 3-[[(1,1-$ Dimethylethyl $)$ diphenylsilyl $]$ oxy $]-$ 7-iodo-5-[(4-methoxyphenyl)methoxy]-2-methyl-6-heptenoic Acid (34b). To a solution of $1.25 \mathrm{~g}(1.9 \mathrm{mmol})$ of 34 a in 35 mL of a mixture of $\mathrm{THF}-\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}(6: 3: 2$) at ambient temperature was added 0.47 $\mathrm{g}(11.2 \mathrm{mmol})$ of $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}$. After 12 h , the reaction mixture was diluted with 20 mL of water and the pH value of the solution was adjusted to $4-5$ by adding 0.1 N aqueous HCl . The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 30 \mathrm{~mL})$. The combined organic layers were washed with water and brine (40 mL each), dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. Purification by flash chromatography (10% ethanol/hexane) gave $0.94 \mathrm{~g}(75 \%)$ of $\mathbf{3 4 b}$ as a white foam: $[\alpha]^{25} \mathrm{D}-70.5^{\circ}(c 1.54, \mathrm{MeOH})$; IR $\left(\mathrm{CHCl}_{3}\right) 2920,2860$, $1720,1610,1510,1460,1425,1225,1110 \mathrm{~cm}^{-1}$; 'H NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.69-7.63(\mathrm{~m}, 4 \mathrm{H}), 7.50-7.35(\mathrm{~m}, 6 \mathrm{H}), 7.07(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{dd}, J=14.5,8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.55(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~d}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.07-4.01(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~m}, 1 \mathrm{H}), 2.67(\mathrm{~m}, 1 \mathrm{H})$, $1.91-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.13(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 178.2,158.9,145.4,135.7,133.2,132.7,129.7$, 129.6, 129.0, 127.4, 113.5, 78.9, 77.4, 69.5, 55.0, 44.5, 38.9, 26.6, 12.1. Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{IO}_{5} \mathrm{Si}$: C, 58.35 ; H, 5.97. Found: C, 57.97 ; H, 6.13.
[$\left.2 R-\left(2 R^{*}, 3 R^{*}, 5 S^{*}, 6 E\right)\right]-3-[[(1,1$-Dimethylethyl)diphenylsilyl]oxy]-7-iodo-5-[(4-methoxyphenyl)methoxy]-2-methyl-6-heptenoic Acid (S)-2-Pyridinyl Ester (34c). To a solution of $60.3 \mathrm{mg}(0.23 \mathrm{mmol})$ of $\mathrm{Ph}_{3} \mathrm{P}$ and $50.3 \mathrm{mg}(0.23 \mathrm{mmol})$ of $(2-\mathrm{PyS})_{2}$ in 3 mL of THF was added at ambient temperature $0.10 \mathrm{~g}(0.15 \mathrm{mmol})$ of $\mathbf{3 4 b}$ as a solution in THF (1.5 mL). After 15 h , the solvent was evaporated in vacuo. Purification by flash chromatography (20% EtOAc/hexane) gave 99 $\mathrm{mg}(89 \%)$ of 34 c as a yellow oil: $[\alpha]^{25} \mathrm{D}-139.8^{\circ}$ (c $1.10, \mathrm{MeOH}$); IR $\left(\mathrm{CHCl}_{3}\right) 2940,2860,1700,1610,1575,1510,1450,1420,1225,1110$, $1035 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.61(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.72-7.64(\mathrm{~m}, 6 \mathrm{H}), 7.50-7.35(\mathrm{~m}, 8 \mathrm{H}), 7.14(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$,
$6.86(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{dd}, J=14.6,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{~d}, J$ $=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~m}, 1 \mathrm{H}), 4.09(\mathrm{~d}, J$ $=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~m}, 1 \mathrm{H}), 3.07(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.64$ $(\mathrm{m}, 2 \mathrm{H}), 1.24(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 198.2,159.2,150.3,145.9,136.9,136.1,136.0,133.6,133.5$, $130.1,129.9,129.5,128.0,127.8,127.7,123.4,113.9,79.6,77.4,71.6$, $69.9,55.3,54.3,38.3,27.0,12.3$. Anal. Calcd for $\mathrm{C}_{37} \mathrm{H}_{42} \mathrm{INO}_{4} \mathrm{SSi}$: C, $59.11 ; \mathrm{H}, 5.63$. Found: C, 59.35; H, 5.37.
$\left[3 S-\left[3 \alpha\left(2 R^{*}, 3 S^{*}, 5 R^{*}, 6 E\right), 4 \beta(1 E, 3 E)\right]-1-[(1,1-\right.$ Dimethylethyl $)-$ dimethylsilyl]-4-[5-[[[(1,1-dimethylethyl)dimethylsilyl]oxy]-2-methyl-1,3-pentadienyl]-3-[3-[[(1,1-dimethylethyl)diphenylsilyl]oxy]-7-iodo-5-[(4-methoxyphenyl)methoxy]-2-methyl-1-0x0-6-heptenyl]-3-methyl2 -azetidinone (42). To a solution of lithium diisopropylamide (1.76 mmol) in 5 mL of THF (generated from 1.1 mL of $1.6 \mathrm{M} \mathrm{n-BuLi}$ in hexane and 0.27 mL of diisopropylamine at $-78^{\circ} \mathrm{C}$) at $-78^{\circ} \mathrm{C}$ was added dropwise $0.55 \mathrm{~g}(1.34 \mathrm{mmol})$ of 41 in 5 mL of THF. The orange solution was stirred at $-78^{\circ} \mathrm{C}$ for 20 min , and then it was transferred $v i a$ cannula to a solution of $1.0 \mathrm{~g}(1.33 \mathrm{mmol})$ of 34 c in 5 mL of THF at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 10 min before it was quenched with 0.5 mL of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was warmed to ambient temperature, diluted with 50 mL of $\mathrm{Et}_{2} \mathrm{O}$, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. Purification by flash chromatography ($10 \% \mathrm{EtOAc} /$ hexane) gave 1.17 $\mathrm{g}(85 \%)$ of 42 as a clear oil: $[\alpha]^{25}{ }_{\mathrm{D}}-57.0^{\circ}\left(\mathrm{c} 1.00, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right)$ 2960, 2930, 2860, 1735, 1280, 1225, 1110, $840 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68(\mathrm{~m}, 4 \mathrm{H}), 7.4(\mathrm{~m}, 6 \mathrm{H}), 7.14(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $6.84(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.26(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{dd}, J=8.3$, $14.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{dt}, J=15.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~d}, J=9.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.14(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~m}$, overlapping signals, 2 H), 4.0 (m, overlapping signals, 2 H), 3.82 (s , $3 \mathrm{H}), 3.62(\mathrm{q}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H})$, $1.82(\mathrm{~m}, 2 \mathrm{H}), 1.75(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$, $0.96(\mathrm{~s}, 9 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.23(\mathrm{~s}, 3 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.09$ $(\mathrm{s}, 6 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{54} \mathrm{H}_{80} \mathrm{INO}_{6} \mathrm{Si}_{3}: \mathrm{C}, 61.75 ; \mathrm{H}: 7.68$. Found: C, 61.44; H, 7.88 .
$\left[3 S-\left[3 \alpha\left(1 R^{*}, 2 R^{*}, 3 S^{*}, 5 R^{*}, 6 E\right), 4 \beta(1 E, 3 E)\right]-1-[(1,1-D i m e t h y l e t h y l)-\right.$ dimethylsilyl]-4-[5-[[(1,1-dimethylethyl)dimethylsilyl]oxy]-2-methyl-1,3-pentadienyl]-3-[3-[[(1,1-diphenylethyl)dimethylsilyl]oxy]-1-hy-droxy-7-iodo-5-[(4-methoxyphenyl)methoxy]-2-methyl-6-heptenyl]-3-methyl-2-azetidinone (43). To a solution of $0.765 \mathrm{~g}(0.738 \mathrm{mmol})$ of ketone 42 in 12 mL of $\mathrm{Et}_{2} \mathrm{O}$ at $-78^{\circ} \mathrm{C}$ was added dropwise 1.0 mL ($1.0 \mathrm{mmol}, 1.0 \mathrm{M}$ in $\mathrm{Et}_{2} \mathrm{O}$) of $\mathrm{KEt}_{3} \mathrm{BH}$. The reaction mixture was stirred for 10 min at $-78^{\circ} \mathrm{C}$ before it was quenched with 0.5 mL of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was warmed to ambient temperature, diluted with 50 mL of $\mathrm{Et}_{2} \mathrm{O}$, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. Purification by flash chromatography (10% EtOAc/hexane) gave 0.65 g (85%) of 43 as a clear oil: $[\alpha]^{25} \mathrm{D}-68.0^{\circ}$ (c $1.50, \mathrm{CHCl}_{3}$); IR $\left(\mathrm{CHCl}_{3}\right) 2960,2930,2860,1735,1280,1225,1110$, $840 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68(\mathrm{~m}, 4 \mathrm{H}), 7.4(\mathrm{~m}, 6 \mathrm{H})$, $7.14(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.26(\mathrm{~d}, J=15.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.87(\mathrm{dd}, J=8.3,14.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{dt}, J=15.6,5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.30(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J$ $=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~m}$, overlapping signals, 2 H$), 4.0(\mathrm{~m}$, overlapping signals, 2 H$), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{q}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{t}, J=6.6$ $\mathrm{Hz}, 1 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{~m}, 2 \mathrm{H}), 1.75(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}), 1.10$ (d, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.23(\mathrm{~s}$, $3 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 6 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{54} \mathrm{H}_{82} \mathrm{INO}_{6} \mathrm{Si}_{3}: \mathrm{C}$, 61.63; H: 7.85. Found: C, 61.47; H, 7.58.
$\left[4 R-\left[4 \alpha(2 E, 4 E), 4 \mathrm{a} \beta, 7 \alpha\left(2 S^{*}, 3 E\right), 8 \beta, 8 \mathrm{a} \beta\right]\right.$-1H-Imidazole-1-carboxylic Acid 5-[Hexahydro-7-[4-iodo-2-[(4-methoxyphenyl)methoxy]-3-butenyl]-4a,8-dimethyl-2,5-dioxo-2H,5H-pyrano[3,4-e]-1,3-oxazin-4-yl]-4-methyl-2,4-pentadienyl Ester (44). To a solution of 0.79 g (0.76 mmol) of 43 in 13 mL of THF at ambient temperature was added $4.5 \mathrm{~mL}\left(4.5 \mathrm{mmol}, 1.0 \mathrm{M}\right.$ in THF) of $\mathrm{Bu}_{4} \mathrm{NF}$. After $2 \mathrm{~h}, 0.5 \mathrm{~mL}(7.7$ mmol) of methanesulfonic acid was added. The reaction mixture was stirred at ambient temperature for 2 h before $1.6 \mathrm{~mL}(11.5 \mathrm{mmol})$ of triethylamine was added. After $20 \mathrm{~min}, 1.0 \mathrm{~g}(6.1 \mathrm{mmol})$ of $1,1^{\prime}$-carbonyldiimidazole was added. After 12 h , the reaction mixture was poured into 100 mL of EtOAc and 50 mL of water. The aqueous layer was extracted with 50 mL of EtOAc. The combined organic layers were dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. Purification by flash chromatography (EtOAc) gave 0.45 g
(85%) of 44 as a foam: $[\alpha]^{25} \mathrm{D}+78.5^{\circ}\left(c 1.00, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right)$ 3420, 2990, 1755, 1720, 1398, 1295, 1095, 1000, $840 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.14(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.44(\mathrm{~m}, 2 \mathrm{H}), 6.33(\mathrm{~d}, J$ $=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.0(\mathrm{br} \mathrm{s},-\mathrm{N} H, 1 \mathrm{H}), 5.89(\mathrm{dt}, J=15.6,6.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.69(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.48(\mathrm{~d}, J=11.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.3(\mathrm{~m}$, overlapping peaks, 2 H$), 4.11(\mathrm{~m}, 1 \mathrm{H}), 4.04(\mathrm{~d}, J=$ $9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.2(\mathrm{~m}, 1 \mathrm{H}), 1.99(\mathrm{~m}, 2 \mathrm{H})$, $1.83(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.94,159.28,152.58,148.43,145.46,139.47,137.84$, $137.10,130.56,129.67,129.23,129.13,122.34,117.14,113.93,84.37$, $80.40,77.76,77.65,70.40,68.38,55.88,55.27,45.64,38.99,37.84$, 24.42, 14.18, 12.86. Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{IN}_{3} \mathrm{O}_{8}$: C, 52.77 ; $\mathrm{H}, 5.14$; $\mathrm{N}, 5.95$. Found: C, $52.43 ; \mathrm{H}, 5.22$; N, 5.85 .
[$4 R-\left[4 \alpha(2 E, 4 E), 4 a \beta, 7 \alpha\left(2 S^{*}, 3 E\right), 8 \beta, 8 a \beta\right]-5-[H e x a h y d r o-7-[4-i o d o-$ 2-[(4-methoxyphenyl)methoxy]-3-butenyl]-4a,8-dimethyl-2,5-dioxo$\mathbf{2 H}, 5 \mathrm{H}$-pyrano[3,4-e]-1,3-oxazin-4-yl]-4-methyl-2,4-pentadienal (45). To a solution of $0.76 \mathrm{~g}(1.08 \mathrm{mmol})$ of 44 in 30 mL each of $1,4-$ dioxane and water at ambient temperature was added 0.7 mL of concentrated hydrochloric acid (37% aqueous solution). After 8 h , the mixture was saturated with solid NaCl and layers were separated. The aqueous layer was extracted with $\mathrm{EtOAc}(3 \times 50 \mathrm{~mL})$. The combined organic layers were dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. Purification by flash chromatography (EtOAc) gave $0.47 \mathrm{~g}(71 \%)$ of the expected alcohol as a white solid: mp 83$85^{\circ} \mathrm{C}$ (from EtOAc); $[\alpha]^{25} \mathrm{D}+101.1^{\circ}\left(c 1.00, \mathrm{CHCl}_{3}\right)$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 3430$, 2990, 1725, 1398, 1295, 1095, 1000, $840 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.21(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.44(\mathrm{~m}$, $2 \mathrm{H}), 6.19(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.1(\mathrm{br} \mathrm{s},-\mathrm{N} H, 1 \mathrm{H}), 5.89(\mathrm{dt}, J=$ $15.7,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=11.1 \mathrm{~Hz}$, $2 \mathrm{H}), 4.30(\mathrm{~m}$, overlapping peaks, 2 H$), 4.19(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.12$ $(\mathrm{m}, 1 \mathrm{H}), 4.02(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.25$ $(\mathrm{m}, 1 \mathrm{H}), 1.95(\mathrm{~m}, 2 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.89,159.28,152.58,145.44$, $145.44,138.64,133.77,130.13,129.76,129.23,129.33,126.51,113.96$, $84.42,80.54,77.81,77.58,70.41,62.97,55.99,55.32,45.53,38.74$, 37.85, 24.48, 14.16, 12.97. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{INO}_{7}$: C, 53.03; H, 5.60; N, 2.29. Found: C, 53.31 ; H, 5.68; N, 2.39.

To a solution of $0.25 \mathrm{~g}(0.40 \mathrm{mmol})$ of the above obtained alcohol in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at ambient temperature was added $0.25 \mathrm{~g}(0.59$ mmol) of Dess-Martin periodinane. After the resultant suspension was stirred for $20 \mathrm{~min}, 5.0 \mathrm{~mL}$ each of saturated aqueous NaHCO_{3} and saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ were added. The mixture was stirred vigorously at ambient temperature for 15 min before the layers were separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. Purification by flash chromatography (EtOAc) gave $0.21 \mathrm{~g}(85 \%)$ of 45 as a white solid: $\mathrm{mp} 88-90$ ${ }^{\circ} \mathrm{C}$ (from EtOAc); $[\alpha]^{25}{ }_{\mathrm{D}}+105.1^{\circ}\left(c 1.00, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) 2990$, $1730,1680,1398,1295,1095,1000,840 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.55(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}$, $J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.46(\mathrm{~m}, 2 \mathrm{H}), 6.23(\mathrm{dd}$, $J=15.7,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{br} \mathrm{s},-\mathrm{N} H$, $1 \mathrm{H}), 4.49(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.34(\mathrm{dd}, J=10.1,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.27$ $(\mathrm{d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~m}$, overlapping peaks, 2 H$), 3.97(\mathrm{~m}, 1 \mathrm{H})$, $3.81(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{~m}, 2 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H})$, $1.20(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 193.65$, 170.67, 159.28, 152.74, 145.39, 137.90, 135.77, 129.69, 129.24, 113.96, $84.43,80.48,77.73,70.39,55.87,55.30,45.87,39.40,37.85,24.18$, $14.25,12.87$. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{INO}_{7}: \mathrm{C}, 53.21 ; \mathrm{H}, 5.29$. Found: C, 53.17; H, 5.42.
$\left[4 R-\left[4 \alpha(2 E, 4 E), 4 \mathrm{a} \beta, 7 \alpha\left(2 S^{*}, 3 E\right), 8 \beta, 8 a \beta\right]-5-[H e x a h y d r o-7-[2-[[(1,1-\right.$ dimethylethyl)dimethylsilyl]oxy]-4-iodo-3-butenyl]-4a,8-dimethyl-2,5-dioxo-2H,5H-pyrano[3,4-e]-1,3-oxazin-4-yl]-4-methyl-2,4-pentadienal (46). To a solution of $0.22 \mathrm{~g}(0.32 \mathrm{mmol})$ of PMB ether 45 in 5.0 mL of acetonitrile at $0^{\circ} \mathrm{C}$ was added $0.526 \mathrm{~g}(0.96 \mathrm{mmol})$ of CAN in 1.5 mL of water. The reaction mixture was warmed to ambient temperature and stirred for 15 min . The mixture was diluted with 20 mL of EtOAc, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The residue was filtered through a small column of silica gel (EtOAc) to remove the inorganic salt. The filtrate was concentrated in vacuo to give $0.15 \mathrm{~g}(97 \%)$ of the alcohol as a white solid which
was used in the subsequent reaction without further purification: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.62(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=$ $15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{dd}, J=14.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=14.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.25(\mathrm{dd}, J=15.7,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.56$ (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~m}, 1 \mathrm{H}), 4.36(\mathrm{dd}, J=10.1,3.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.10(\mathrm{~m}$, overlapping peaks, 2 H$), 2.35(\mathrm{~m}, 1 \mathrm{H}), 2.2(\mathrm{~d}, J=2.7 \mathrm{~Hz}$, $1 \mathrm{H}), 1.95(\mathrm{~m}, 2 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~d}, J=6.5 \mathrm{~Hz}$, $3 \mathrm{H})$.
To a solution of $0.14 \mathrm{~g}(0.286 \mathrm{mmol})$ of the alcohol in 2.0 mL of DMF at ambient temperature were added $0.2 \mathrm{~g}(2.9 \mathrm{mmol})$ of imidazole and $0.2 \mathrm{~g}(1.3 \mathrm{mmol})$ of (TBS)Cl. After 1 h , the mixture was poured into 20 mL of $\mathrm{Et}_{2} \mathrm{O}$ and 10 mL of $\mathrm{H}_{2} \mathrm{O}$. The aqueous phase was extracted with 15 mL of $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. Purification by flash chromatography (EtOAc) gave $0.12 \mathrm{~g}(79 \%)$ of 46 as a white solid: $\mathrm{mp} 90-91^{\circ} \mathrm{C}$ (from EtOAc); $[\alpha]^{25} \mathrm{D}+274.5^{\circ}$ (c 1.00 , CHCl_{3}); IR $\left(\mathrm{CHCl}_{3}\right): 3430,2950,2930,2855,1735,1680,1250(\mathrm{br})$, $1330,1075,910,835 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.61$ (d, J $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{dd}, J=14.5,6.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.35(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{dd}, J=15.7,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.15$ (d, $J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.5(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.41(\mathrm{q}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.35$ (dd, $J=10.1,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{dt}, J=3.1$, $10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{~m}, 1 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{~m}, 2 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H})$, $1.21(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 193.45,170.33,154.96,152.52,147.29,138.11,135.59$, 129.90, 84.44, 77.91, 77.24, 71.78, 56.10, 45.78, 41.02, 39.53, 25.72, $23.93,18.06,14.47,12.93,-4.52,-4.83$. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{38}-$ $\mathrm{INO}_{6} \mathrm{Si}: \mathrm{C}, 49.75 ; \mathrm{H}, 6.34 ; \mathrm{N}, 2.32$. Found: C, 49.93; H, 6.24; N, 2.39.
[$4 R-\left[4 \alpha(2 E, 4 E), 4 \mathrm{a} \beta, 7 \alpha\left(2 S^{*}, 3 E, 5 E\right), 8 \beta, 8 \mathrm{a} \beta\right]-5-[H e x a h y d r o-7-[7-$ hydroxy-5-methyl-2-[[(1,1-dimethylethyl)dimethylsily]]oxy]-3,5-hep-tadienyl]-4a,8-dimethyl-2,5-dioxo-2H,5H-pyrano[3,4-e]-1,3-oxazin-4-yll-4-methyl-2,4-pentadienal (54a). To a solution of $120 \mathrm{mg}(0.20$ $\mathrm{mmol})$ of 46 and $70 \mathrm{mg}(0.25 \mathrm{mmol})$ of 47^{42} in 1.0 mL of DMF at ambient temperature was added $8.0 \mathrm{mg}(0.03 \mathrm{mmol})$ of $\mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}$. The dark reaction mixture was stirred at ambient temperature for 2 h . The solvent was removed in vacuo. Purification by flash chromatography (EtOAc) gave 98 mg (90%) of $\mathbf{5 4 a}$ as a solid: $\mathrm{mp} 88-90^{\circ} \mathrm{C}$ (from EtOAc); $[\alpha]^{25} \mathrm{D}+175.1^{\circ}\left(c 1.00, \mathrm{CHCl}_{3}\right)$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 2950,1727$, $1680,1250,910 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.58(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.3-6.1$ (m, overlapping signals, 3 H), 5.77 (dd, $J=15.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{q}$, $J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{dd}, J=9.9,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $2 \mathrm{H}), 2.12(\mathrm{~m}, 1 \mathrm{H}), 1.91(\mathrm{~m}, 1 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}$, 3 H), 1.18 (d, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H}$), $0.87(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 193.51,170.45,154.98,152.32,138.07$, $135.75,135.21,130.66,130.63,129.91,84.44,77.79,70.23,59.21$, $56.15,45.62,42.00,39.27,25.78,23.93,18.06,14.50,12.93,12.67$, -4.24, -4.72. Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{45} \mathrm{NO}_{7} \mathrm{Si}: \mathrm{C}, 63.59 ; \mathrm{H}, 8.28$; N , 2.32. Found: C, $63.12 ; \mathrm{H}, 8.08$; N, 2.37 .
[$4 R-\left[4 \alpha(2 E, 4 E), 4 \mathrm{a} \beta, 7 \alpha\left(2 S^{*}, 3 E, 5 E\right), 8 \beta, 8 a \beta\right]-5-[H e x a h y d r o-7-[7-$ chloro-5-methyl-2-[[(1,1-dimethylethyl)dimethylsilyl]oxy]-3,5-hep-tadienyl]-4a,8-dimethyl-2,5-dioxo-2H,5H-pyrano[3,4-e]-1,3-oxazin-4-yl]-4-methyl-2,4-pentadienal (54b). To a solution of $83 \mathrm{mg}(0.15$ $\mathrm{mmol})$ of 54 a in 2.0 mL of DMF was added $21 \mu \mathrm{~L}(0.18 \mathrm{mmol})$ of $2,6-$ lutidine and $12.7 \mathrm{mg}(0.3 \mathrm{mmol})$ of LiCl . The mixture was cooled to $0^{\circ} \mathrm{C}$, and $14 \mu \mathrm{~L}(0.18 \mathrm{mmol})$ of methanesulfonyl chloride was added dropwise. After 3 h at $0^{\circ} \mathrm{C}$, the reaction mixture was partitioned between 10 mL each of $\mathrm{Et}_{2} \mathrm{O}$ and cold water. The aqueous layer was extracted with 10 mL of $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo to give 85 mg of the crude $\mathbf{5 4 b}$ which was used without further purification: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.61(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=$ $15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.3-6.1$ (m, overlapping signals, 4 H), $5.75-5.63$ (m, overlapping signals, 2 H), $4.48(\mathrm{q}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{dd}, J=10.0$, $3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{dd}, J=8.2,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.07(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.94(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{~m}, 1 \mathrm{H}), 1.93(\mathrm{~m}, 2 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H})$, $1.60(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.01$ ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 193.36,170.40,154.81,154.78$, $138.12,138.09,135.53,134.30,132.14,129.98,126.59,84.50,77.64$, $70.03,56.23,45.72,41.92,40.55,39.42,25.76,24.05,18.07,14.47$, 12.92, 12.40, -4.29, -4.72 .
[1S,5R,5E,8E,12E,14E,16S,18R,21S,22R]-7,12,21,22-Tetramethyl-16-[[(1,1-dimethylethyl)dimethylsilyl]oxy]-3,10,20-trioxo-2,19,4dioxaazatricyclo[16.3.1.0 ${ }^{5,21}$ ddocosa-6,8,12,14-tetraene (56). To a solution of $85 \mathrm{mg}(0.15 \mathrm{mmol})$ of $\mathbf{5 4 b}$ in 0.5 mL of benzene at $0^{\circ} \mathrm{C}$ were added $60 \mathrm{mg}(0.6 \mathrm{mmol})$ of (TMS)CN and 0.5 mg of $\mathrm{KCN} / 18$ -crown- 6 complex. After 2.5 h at $0^{\circ} \mathrm{C}$, the solvent was removed in vacuo. Benzene (1.0 mL) was added, and the mixture was evaporated to dryness again in vacuo. The residue was dissolved in 7.5 mL of THF. To this solution at $-78^{\circ} \mathrm{C}$ was added dropwise $0.6 \mathrm{~mL}(0.6$ mmol, 1 M in THF) of lithium bis(trimethylsilyl)amide. The resultant brown solution was stirred at $-78^{\circ} \mathrm{C}$ for 30 min and then quenched with 0.1 mL of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was warmed to ambient temperature, diluted with 10 mL of EtOAc, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was dissolved in 2.0 mL of a mixture of $\mathrm{THF}-\mathrm{AcOH}-\mathrm{H}_{2} \mathrm{O}(10: 5: 1)$. After 20 h at ambient temperature, the mixture was poured into 10 mL of $\mathrm{Et}_{2} \mathrm{O}$ and 5 mL of saturated aqueous NaHCO_{3}. The aqueous layer was extracted with 10 mL of $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with 10 mL of brine and concentrated in vacuo to a volume of 3 mL . This solution was shaken vigorously for 5 min with 5 mL of $1 \% \mathrm{NaOH}$ aqueous solution. The layers were separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL})$. The combined organic layers were dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. Purification by flash chromatography (EtOAc) gave 48.7 mg (61% from 54a) of 56 as a white solid: mp $172-173^{\circ} \mathrm{C}$ (from EtOAc); $[\alpha]^{25}{ }_{\mathrm{D}}-93.5^{\circ}$ (c 1.00, CHCl_{3}); $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 3410,2950,1750$, $1680,1300,970,835 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.99$ (d, J $=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.98(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{dd}, J=8.1$, $15.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{~d}, J=9.9 \mathrm{~Hz}$, broad, 1 H$), 4.37(\mathrm{~m}, 1 \mathrm{H}), 4.20(\mathrm{dd}$, $J=4.9,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.45$ (dd, $J=17.5,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{dd}, J=17.5,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{~m}$, $1 \mathrm{H}), 2.15(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{~m}, 1 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}$, $3 \mathrm{H}), 1.30(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.89,171.39,153.46,146.48,138.20$, 137.81, 135.22, 131.74, 131.19, 126.10, 125.38, 85.87, 76.69, 71.06, $56.12,47.31,42.58,39.17,37.92,28.03,25.68,17.94,13.95,13.09$, 12.63, -3.98, -4.62; MS (EI) m/e $529\left(\mathrm{M}^{+}\right), 472,397,224,197,123$; FAB HRMS (NBA) calcd for $\mathrm{C}_{29} \mathrm{H}_{44} \mathrm{NO}_{6} \mathrm{Si}\left(\mathrm{MH}^{+}\right) 530.29384$, found 530.29379.
[1S,5R,5E,8E,10S,12E,14E,16S,18R,21S,22R]-7,12,21,22-Tetra-methyl-10,16-bis[[(1,1-dimethylethyl)dimethylsilyl]oxy]-3,20-dioxo-2,19,4-dioxaazatricyclo[16.3.1.0 $\left.{ }^{5,21}\right]$ docosa-6,8,12,14-tetraene (15, Synthetic). To a solution of $48 \mathrm{mg}(0.0906 \mathrm{mmol})$ of enone 56 in 1.0 mL of THF was added $9.0 \mu \mathrm{~L}$ ($0.009 \mathrm{mmol}, 1.0 \mathrm{M}$ in toluene) of the oxazaborole catalyst $57 .{ }^{50}$ The mixture was cooled to $-10^{\circ} \mathrm{C}$, and $63.5 \mu \mathrm{~L}\left(0.0635 \mathrm{mmol}, 1.0 \mathrm{M}\right.$ in THF) of $\mathrm{BH}_{3} \cdot \mathrm{THF}$ was added dropwise. The resultant suspension was stirred at $-10^{\circ} \mathrm{C}$ for 30 min and quenched with 0.1 mL of methanol. The reaction mixture was warmed to ambient temperature and stirred for 2 h . The solvent was removed in vacuo. Purification by flash chromatography (EtOAc) gave 43 mg of the 8β-carbinol product along with 3 mg of the 8α-carbinol product (89%): $\left(8 \beta\right.$-carbinol) $\mathrm{mp} 172-173^{\circ} \mathrm{C}$ (from EtOAc); $[\alpha]^{25} \mathrm{D}$ $-72.1^{\circ}\left(c 1.00, \mathrm{CHCl}_{3}\right) ;$ IR $\left(\mathrm{CHCl}_{3}\right) 3430,2930,1730,1250 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.03(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{dd}, J=$ $15.6,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{~d}, J=4.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.47(\mathrm{dd}, J=15.8,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}$, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~m}, 1 \mathrm{H}), 4.21(\mathrm{dd}, J=4.7,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.14$ (m, 1H), $4.08(\mathrm{~m}, 1 \mathrm{H}), 3.89(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~m}, 2 \mathrm{H}), 2.22$ $(\mathrm{m}, 1 \mathrm{H}), 2.05-1.90(\mathrm{~m}$, overlapping signals, 3 H$), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.63$ $(\mathrm{s}, 3 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}$, $3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.30,153.47$, 138.20, 136.95, 136.00, 133.37, 133.26, 131.87, 130.78, 126.57, 125.90, 85.70, 76.85, 71.06, 70.65, 56.05, 47.20, 39.40, 37.95, 28.25, 25.85, $18.10,13.22,12.65,12.20,-3.98,-4.60$; (8α-carbinol) ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.11(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.73-5.65(\mathrm{~m}$, overlapping signals, 2 H), $5.60-5.45(\mathrm{~m}$, overlapping signals, 2 H), $5.30(\mathrm{br} \mathrm{d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.35(\mathrm{~m}$, $1 \mathrm{H}), 4.22(\mathrm{dd}, J=4.7,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~m}, 1 \mathrm{H}), 3.89(\mathrm{~d}, J=10.9$ $\mathrm{Hz}, 1 \mathrm{H}), 2.50(\mathrm{~m}, 2 \mathrm{H}), 2.40(\mathrm{~m}, 1 \mathrm{H}), 2.22(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.97(\mathrm{~m}$, overlapping signals, 3 H), $1.73(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.25$ $(\mathrm{d}, J=5.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H})$.

To a solution of $43 \mathrm{mg}(0.08 \mathrm{mmol})$ of the 8β-carbinol product in 1.0 mL of DMF at ambient temperature were added $40 \mathrm{mg}(0.58 \mathrm{mmol})$ of imidazole and $40 \mathrm{mg}(0.26 \mathrm{mmol})$ of (TBS)Cl. After 1.5 h , the mixture was poured into 10 mL each of $\mathrm{Et}_{2} \mathrm{O}$ and water. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The combined organic layers were dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. Purification by flash chromatography (EtOAc) gave 50 mg (96%) of 15 as a white solid: mp $187-188^{\circ} \mathrm{C}$ (from EtOAc); $[\alpha]^{25} \mathrm{D}-69.9^{\circ}$ (c $0.82, \mathrm{CHCl}_{3}$); IR $\left(\mathrm{CHCl}_{3}\right) 3430,2958,2923,2858,1730,1480,1390$, $1360,1250,1080,1060,965,838 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 6.02(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{N} H), 5.68(\mathrm{dd}$, $J=8.9,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{dd}, J=7.4$, $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{dd}, J=5.1,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=10.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.32(\mathrm{~m}, 1 \mathrm{H}), 4.21(\mathrm{dd}, J=4.7,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.05$ (m, overlapping signals, 2 H$), 3.88(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{~m}, 1 \mathrm{H})$, $2.20(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H})$, $1.50(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.06$ (br s, overlapping signals, 9 H), $0.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 171.18,153.33,138.28,136.75,136.07,133.32,132.22$, $130.87,127.15,124.65,85.61,76.99,75.37,70.63,55.84,47.14,39.31$, $37.93,37.76,28.21,25.87,25.80,18.26,18.05,13.38,12.67,12.38$, $-3.87,-4.50,-4.77$; MS (FD) $m / e 645\left(\mathrm{M}^{+}\right), 514,408,322,294$, 133, 115, 78; FAB HRMS (NBA) calcd for $\mathrm{C}_{35} \mathrm{H}_{60} \mathrm{NO}_{6} \mathrm{Si}_{2}\left(\mathrm{MH}^{+}\right)$ 646.3959, found 646.3968. Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{59} \mathrm{NO}_{6} \mathrm{Si}_{2}$: C, 65.07 ; H, 9.21; N, 2.17. Found: C, 64.85; H, 9.35; N, 2.12.
$\left.\left[1 S-\left(1 R^{*}, 2 S^{*}, 3 E, 5 E, 7 R^{*}, 9 E, 11 E, 13 R^{*}, 15 S^{*}, 19 S^{*}\right)\right]\right]-N-[18-H y d r o x y-$ 7,13-bis[[(1,1-dimethylethyl)dimethylsilyl]oxy]-1,4,10,19-tetramethyl-17-oxo-16-oxabicyclo[13.2.2]nonadeca-3,5,9,11-tetraen-2-yl]-2-hydroxypropanamide (12, from Natural 1). To a solution of 230 mg (0.50 mmol) of lankacidin C (1) in 2.5 mL of DMF at ambient temperature were added $200 \mathrm{mg}(2.9 \mathrm{mmol})$ of imidazole and 200 mg (1.3 mmol) of (TBS)Cl. After 0.5 h , the mixture was poured into 100 mL each of $\mathrm{Et}_{2} \mathrm{O}$ and water. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$. The combined organic layers were dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. Purification by flash chromatography (EtOAc) gave 344 mg (100%) of the expected bis(TBS ether) as a white solid: mp $222-224^{\circ} \mathrm{C}$ (from EtOAc); $[\alpha]^{25}$ D $-177.0^{\circ}\left(c 1.00, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) 3390,2950,2930,2850,1750$, $1710,1685,1255,1105,835 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.10(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{dd}, J=$ $9.4,15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.5(\mathrm{~m}$, overlapping signals, 2 H), $5.43(\mathrm{t}, J=10.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.25(\mathrm{dd}, J=5.1,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.35(\mathrm{~m}, 1 \mathrm{H}), 4.31(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{~m}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.46-2.40(\mathrm{~m}$, overlapping signals, 2 H), 2.37-2.23 (m, overlapping signals, 2 H), 2.2$2.1(\mathrm{~m}, 1 \mathrm{H}), 1.9(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~d}, J=6.7$ $\mathrm{Hz}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}$, $3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 211.14,196.50$, $169.73,159.66,139.51,136.94,136.31,133.01,132.59,129.92,127.87$, $123.54,75.61,75.37,70.73,56.72,51.77,46.40,38.32,37.99,25.81$, $25.74,24.40,20.93,18.19,18.02,12.80,12.60,9.56,-3.85,-4.46$, -4.58, -4.83. Anal. Caled for $\mathrm{C}_{37} \mathrm{H}_{61} \mathrm{NO}_{7} \mathrm{Si}_{2}: \mathrm{C}, 64.58 ; \mathrm{H}, 8.94 ; \mathrm{N}$, 2.03. Found: C, $64.21 ; \mathrm{H}, 8.96 ; \mathrm{N}, 2.00$.

To a solution of $130 \mathrm{mg}(0.19 \mathrm{mmol})$ of the bis(TBS ether) in 4.0 mL of MeOH at ambient temperature was added $30 \mathrm{mg}(0.75 \mathrm{mmol})$ of NaBH_{4}. The suspension slowly became homogeneous. After 1 h , the reaction was quenched with 0.2 mL of AcOH . Purification by flash chromatography ($5 \% \mathrm{MeOH} / \mathrm{EtOAc}$) gave 70 mg of less polar $2^{\prime}-(S)$ diol and 60 mg of more polar $2^{\prime}-(R)$-isomer (99% total): (less polar 2^{\prime}-(S)-product) $\mathrm{mp} 226-228^{\circ} \mathrm{C}$ (from EtOAc); $[\alpha]^{25} \mathrm{D}-85.9^{\circ}$ (c 1.00 , $\mathrm{MeOH})$; IR $\left(\mathrm{CHCl}_{3}\right) 3410,2950,2930,2855,1722,1660,1500,1460$, $1250,1050,835 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82(\mathrm{~d}, J=$ $19.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.70-5.59$ (m, overlapping signals, 3 H), $5.50-5.40(\mathrm{~m}$, overlapping signals, 2 H), 5.28 (dd, $J=$ $6.5,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~m}, 1 \mathrm{H}), 4.21(\mathrm{~m}, 1 \mathrm{H}), 4.04(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{br}$ $\mathrm{d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{br} \mathrm{d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~m}, 1 \mathrm{H}), 2.25$ $(\mathrm{m}, 1 \mathrm{H}), 2.20-2.02(\mathrm{~m}$, overlapping signals, 2 H$), 1.85(\mathrm{~s}, 3 \mathrm{H}), 1.50$ $(\mathrm{s}, 3 \mathrm{H}), 1.42(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~d}, J=6.3 \mathrm{~Hz}$, $3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}$, overlapping signals, $6 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.17,174.62$, $137.74,137.20,136.50,134.04,130.79,129.37,127.74,127.05,81.02$, $78.07,75.45,71.22,68.35,52.98,51.16,39.10,38.84,38.08,27.55$, $25.89,21.43,18.26,18.07,13.37,12.63,12.42,-3.80,-4.44,-4.77$.

Anal. Calcd for $\mathrm{C}_{40} \mathrm{H}_{65} \mathrm{NO}_{9} \mathrm{Si}_{2}$: C, $64.21 ; \mathrm{H}, 9.47 ; \mathrm{N}, 2.02$. Found: C, $64.35 ; \mathrm{H}, 9.58 ; \mathrm{N}, 2.06$. (more polar $2^{\prime}-(R)$-diol) mp $210-211^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98(\mathrm{br} \mathrm{d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{~d}, J$ $=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.62-5.59(\mathrm{~m}$, overlapping signals, 2 H$), 5.50-5.40$ (m, overlapping signals, 3 H), $5.30(\mathrm{dd}, J=5.3,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.66$ (br $\mathrm{s}, 1 \mathrm{H}), 4.33(\mathrm{q}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~m}$, $1 \mathrm{H}), 3.93(\mathrm{br} \mathrm{d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{br} \mathrm{d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.42$ $(\mathrm{q}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~m}, 1 \mathrm{H}), 2.12(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 1.78$ $(\mathrm{m}, 1 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~d}$, $J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.08$ (s, overlapping signals, $6 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H})$.
$\left[1 S-\left[1 S-\left(1 R^{*}, 2 S^{*}, 3 E, 5 E, 7 R^{*}, 9 E, 11 E, 13 R^{*}, 15 S^{*}, 19 S^{*}\right)\right]\right]-1 H-$ Imidazole-1-carboxylic Acid 2-[7,12,21,22-Tetramethyl-10,16-bis-[[(1,1-dimethylethyl)dimethylsilyl]oxy]-3,20-dioxo-2,19,4dioxaazatricyclo[16.3.1.0 ${ }^{5,21}$]docosa-6,8,12,14-tetraen-4-yl]-2-oxo-1methylethyl Ester (13). To a solution of $70 \mathrm{mg}(0.10 \mathrm{mmol})$ of $\mathbf{1 2}$ (less polar isomer) in 10 mL of THF was added $100 \mathrm{mg}(0.61 \mathrm{mmol})$ of $1,1^{\prime}$-carbonyldiimidazole. The mixture was cooled to $-78^{\circ} \mathrm{C}$, and 0.35 mL ($0.35 \mathrm{mmol}, 1.0 \mathrm{M}$ in THF) of lithium bis(trimethylsilyl)amide was added dropwise. After 10 min at $-78^{\circ} \mathrm{C}$, the reaction was quenched with 0.2 mL of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The reaction mixture was warmed to room temperature, diluted with 20 mL of EtOAc, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. Purification by flash chromatography (EtOAc) gave 76 mg (92%) of 13 as a white solid: mp $144-145^{\circ} \mathrm{C}$ (from EtOAc); $[\alpha]^{25}$ D -168.2° (с $1.00, \mathrm{CHCl}_{3}$); IR $\left(\mathrm{CHCl}_{3}\right) 2955,2920,2850,1755,1740$, $1395,838 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.15(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{~s}$, $1 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 6.03(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{q}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$, $5.73(\mathrm{~d}, J=11.0 \mathrm{~Hz}), 1 \mathrm{H}), 5.65(\mathrm{dd}, J=9.3,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{~m}$, overlapping signals, 2 H), $5.26(\mathrm{dd}, J=4.6,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J$ $=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~m}, 1 \mathrm{H}), 4.08(\mathrm{~m}$, overlapping signals, 2 H$), 3.99$ $(\mathrm{d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{~m}, 1 \mathrm{H}), 2.22(\mathrm{~m}, 1 \mathrm{H}), 2.15$ $(\mathrm{m}, 1 \mathrm{H}), 1.98(\mathrm{~m}, 1 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.58(\mathrm{~s}$, $3 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.87(\mathrm{~s}, 9 \mathrm{H}), 1.85(\mathrm{~s}, 9 \mathrm{H})$, $0.40(\mathrm{~s}, 3 \mathrm{H}), 0.35(\mathrm{~s}, 3 \mathrm{H}), 0.34(\mathrm{~s}, 3 \mathrm{H}), 0.20(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.66,170.20,150.22,148.50,141.76,137.15,136.69$, $136.60,133.11,132.96,130.89,130.25,127.56,120.43,117.09,86.91$, $76.40,75.22,74.11,70.59,55.21,47.57,38.33,38.01,37.81,29.66$, $27.48,25.85,25.79,18.22,18.06,16.82,13.54,12.58,-3.78,-4.48$, -4.77. Anal. Calcd for $\mathrm{C}_{42} \mathrm{H}_{65} \mathrm{~N}_{3} \mathrm{O}_{9} \mathrm{Si}_{2}$: C, $62.11 ; \mathrm{H}, 8.07$; N, 5.17. Found: C, $61.80 ; \mathrm{H}, 8.25$; N, 5.15 .
[1S,5R,5E,8E,10S,12E,14E,16S,18R,21S,22R]-7,12,21,22-Tetra-methyl-10,16-bis[[(1,1-dimethylethyl)dimethylsilyl]oxy]-3,20-dioxo-2,19,4-dioxaazatricyclo[16.3.1.0 ${ }^{5,21}$]docosa-6,8,12,14-tetraene (15, Degradative Relay from Natural 1). To a solution of $73 \mathrm{mg}(0.09 \mathrm{mmol})$ of $\mathbf{1 3} \mathrm{in} 1.5 \mathrm{~mL}$ of THF and 0.5 mL of $\mathrm{H}_{2} \mathrm{O}$ at $0^{\circ} \mathrm{C}$ were added $80 \mu \mathrm{~L}$ ($0.7 \mathrm{mmol}, 30 \%$ aqueous solution) of $\mathrm{H}_{2} \mathrm{O}_{2}$ and $14.3 \mathrm{mg}(0.35 \mathrm{mmol})$ of $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}$. The reaction was warmed to ambient temperature. After 10 h , the reaction mixture was diluted with 15 mL of EtOAc, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. Purification by flash chromatography (EtOAc) gave $57 \mathrm{mg}(98 \%)$ of 13 as a white solid: $\mathrm{mp} 186-187^{\circ} \mathrm{C}$ (from EtOAc); $[\alpha]^{25} \mathrm{D}-68.3^{\circ}$ (c 1.00, CHCl_{3}); IR $\left(\mathrm{CHCl}_{3}\right) 3430,2958,2923,2858,1730,1480,1390,1360$, $1250,1080,1060,965,838 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.02$ $(\mathrm{d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{dd}, J=8.9,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{N} H), 5.45(\mathrm{dd}, J=7.4,16.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.25(\mathrm{dd}, J=5.1,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.32(\mathrm{~m}, 1 \mathrm{H}), 4.21(\mathrm{dd}, J=4.7,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.05$ (m, overlapping signals, 2 H$), 3.88(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{~m}, 1 \mathrm{H})$, $2.20(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H})$, $1.50(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.06$ (br s, overlapping signals, 9 H), $0.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 171.21,153.48,138.24,136.74,136.08,133.34,132.17$, $130.78,127.15,124.66,85.62,76.98,75.37,70.63,55.78,47.16,39.28$, $37.93,37.75,28.20,25.87,25.79,18.25,18.05,13.39,12.66,12.38$, $-3.87,-4.50,-4.76$; MS (FD) $m / e 645\left(\mathrm{M}^{+}\right), 514,408,322,294$, 133, 115, 78; FAB HRMS (NBA) calcd for $\mathrm{C}_{35} \mathrm{H}_{60} \mathrm{NO}_{6} \mathrm{Si}_{2}\left(\mathrm{MH}^{+}\right)$ 646.3959, found 646.3939. Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{59} \mathrm{NO}_{6} \mathrm{Si}_{2}$: C, 65.07 ; H, 9.21; N, 2.17. Found: C, $65.40 ; \mathrm{H}, 8.82$; N, 2.16.
[1S,5R,6E,8E,10S,12E,14E,16S,18R,21S,22R]-N-[1,2-Dioxopropyl]-7,12,21,22-tetramethyl-10,16-bis[[(1,1-dimethylethyl)dimethylsilyl]-oxy]-3,20-dioxo-2,19,4-dioxaazatricyclo[16.3.1.0 $\left.0^{5,21}\right]$ docosa-6,8,12,14-
tetraene (16). To a solution of $30 \mathrm{mg}(0.045 \mathrm{mmol})$ of relay 15 in 1.5 mL of THF at $-78{ }^{\circ} \mathrm{C}$ was added dropwise $66 \mu \mathrm{~L}(0.066 \mathrm{mmol}$, 1.0 M in THF) of lithium bis(trimethylsilyl)amide. After $5 \mathrm{~min}, 90$ $\mu \mathrm{L}$ ($0.045 \mathrm{mmol}, 0.5 \mathrm{M}$ in THF) of pyruvoyl chloride was added. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 15 min and then quenched with $60 \mu \mathrm{~L}$ of AcOH . The reaction was warmed to ambient temperature and purified directly by preparative TLC (50% EtOAc/hexane) to give 32 mg (91%) of 16 as a white solid: $\mathrm{mp} 233-234{ }^{\circ} \mathrm{C}$ (from EtOAc); $[\alpha]^{25} \mathrm{D}-142.1^{\circ}\left(\mathrm{c} 1.40, \mathrm{CHCl}_{3}\right)$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 2950,2920,2855,1738$, $1158,1060,835 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.04$ (d, $J=$ $15.5 \mathrm{~Hz}, \mathrm{lH}), 5.65(\mathrm{dd}, J=9.2,15.4 \mathrm{~Hz}, \mathrm{lH}), 5.57(\mathrm{~m}, 2 \mathrm{H}), 5.37(\mathrm{~d}$, $J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{dd}, J=5.0,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=11.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.29(\mathrm{dt}, \mathrm{J}=5.3,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.07$ (m, overlapping signals, $2 \mathrm{H}), 3.99(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{~m}$, $1 \mathrm{H}), 2.23(\mathrm{~m}, 1 \mathrm{H}), 2.11(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{~m}, 3 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}$, $3 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H})$, $0.07(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}$, overlapping signals, 6 H$), 0.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 194.37,169.96,168.51,150.59,141.83,136.79$, $136.58,133.18,132.97,130.19,127.64,120.00,87.08,76.56,75.20$, $70.54,54.98,47.39,38.33,37.99,37.75,29.65,27.70,25.85,25.78$, $18.23,18.04,13.40,12.60,12.65,-3.79,-4.49,-4.79$. Anal. Calcd for $\mathrm{C}_{38} \mathrm{H}_{61} \mathrm{NO}_{8} \mathrm{Si}_{2}$: $\mathrm{C}, 63.74 ; \mathrm{H}, 8.73 ; \mathrm{N}, 1.96$. Found: $\mathrm{C}, 63.96 ; \mathrm{H}$, 8.93; N, 1.91.
$\left[2 S-\left[1 S-\left(1 R^{*}, 2 S^{*}, 3 E, 5 E, 7 R^{*}, 9 E, 11 E, 13 R^{*}, 15 S^{*}, 19 S^{*}\right)\right]\right]-N-[18-\mathrm{Hy}-$ droxy-7,13-bis[[(1,1-dimethylethyl)dimethylsilyl]oxy]-1,4,10,19-tet-ramethyl-17-oxo-16-oxabicyclo[13.2.2]nonadeca-3,5,9,11-tetraen-2-yll-2-hydroxypropanamide (18). To a solution of 30.0 mg (0.042) of 16 in 1.5 mL of a mixture of $\mathrm{THF}-\mathrm{H}_{2} \mathrm{O}(3: 1)$ at $0{ }^{\circ} \mathrm{C}$ was added $6.0 \mathrm{mg}(0.15 \mathrm{mmol})$ of $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}$. After 5 min at $0^{\circ} \mathrm{C}$, the reaction mixture was diluted with 15 mL of EtOAc, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The residue was purified by preparative TLC (EtOAc) to give $8.7 \mathrm{mg}(30 \%)$ of 18 as a white solid along with $16.2 \mathrm{mg}(60 \%)$ of $\mathbf{1 5}$. Data for 18: $\mathrm{mp} 149-150^{\circ} \mathrm{C}$ (from EtOAc); $[\alpha]^{25} \mathrm{D}-195.0^{\circ}\left(c 1.20, \mathrm{CHCl}_{3}\right)$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 3400,2950$, 2930, 2855, 1722, 1680, 1250, 1050, $835 \mathrm{~cm}^{-1}$; 'H NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.08(\mathrm{~d}, J=10.2 \mathrm{~Hz},-\mathrm{N} H, 1 \mathrm{H}), 6.04(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H})$, 5.65 (dd, $J=9.1,15.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.57-5.40$ (m, overlapping signals, 3 H), 5.27 (dd, $J=5.1,11.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.30 $(\mathrm{m}, 1 \mathrm{H}), 4.03(\mathrm{~m}, \mathrm{lH}), 3.95(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{dd}, J=4.510 .6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.59(\mathrm{~d}, J=4.6 \mathrm{~Hz},-\mathrm{OH}, 1 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{~m}$, $1 \mathrm{H}), 2.20(\mathrm{~m}, 1 \mathrm{H}), 2.10(\mathrm{~m}, 1 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}$, 3 H), $1.13(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H})$, 0.05 (s, overlapping signals, 6 H), $0.01(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $(300 \mathrm{MHz}$, CDCl_{3}) $\delta 197.65,173.09,159.49,138.30,137.60,136.75,133.76$, $131.41,129.56,127.59,125.92,82.17,77.05,75.52,71.20,53.71,50.81$, $38.96,38.75,38.01,27.85,25.87,25.80,24.68,18.24,18.05,13.33$, 12.68, 12.41, $-3.75,-4.45,-4.79$. Anal. Calcd for $\mathrm{C}_{37} \mathrm{H}_{63} \mathrm{NO}_{7} \mathrm{Si}_{2}$: C, 64.40; H, 9.20 , N, 2.03. Found: C, 64.65; H, 9.24; N, 1.96.
[1S,4(2S),5R,6E,8E,10S,12E,14E,16S,18R,21S,22R]-N-[2-Acetoxy-1-oxo-propyl]-7,12,21,22-tetramethyl-10,16-bis[[(1,1-dimethylethyl)-dimethylsilyl]oxy]-3,20-dioxo-2,19,4-dioxaazatricyclo[16.3.1.0 $\left.{ }^{5,21}\right]$ -docosa-6,8,12,14-tetraene (17). To a solution of $10 \mathrm{mg}(0.015 \mathrm{mmol})$ of relay 15 in 0.5 mL of THF at $-78^{\circ} \mathrm{C}$ was added dropwise $22 \mu \mathrm{~L}$ ($0.022 \mathrm{mmol}, 1.0 \mathrm{M}$ in THF) of lithium bis(trimethylsilyl)amide. After $5 \mathrm{~min}, 30 \mu \mathrm{~L}(0.015 \mathrm{mmol}, 0.5 \mathrm{M}$ in THF) of O-acetyl-(S)-lactoyl chloride was added. The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 15 min and then quenched with $20 \mu \mathrm{~L}$ of AcOH . The reaction was warmed to ambient temperature and purified directly by preparative TLC $(50 \% \mathrm{EtOAc} /$ hexane $)$ to give $10.0 \mathrm{mg}(85 \%)$ of 17 as a white solid: $\mathrm{mp} 252-253{ }^{\circ} \mathrm{C}$ (from EtOAc); $[\alpha]^{25 \mathrm{D}}-195.5^{\circ}$ (c $1.00, \mathrm{CHCl}_{3}$); IR (CHCl_{3}) 2950, 2920, 2855, 1735, 1370, $835 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.03(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.63-5.45$ (m, overlapping signals, 4 H), 5.27 (dd, $J=4.7,11.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.08(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~m}, 1 \mathrm{H}), 4.06(\mathrm{~m}$, overlapping signals, 2 H$), 3.95(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{q}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.30(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{~m}, 1 \mathrm{H}), 2.11(\mathrm{~s}+\mathrm{m}$, overlapping signals, $1 \mathrm{H}+3 \mathrm{H})$, $1.86(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.29$ $(\mathrm{d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}$, overlapping signals, 6 H), $0.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $173.08,170.98,170.46,150.31,141.36,136.64,136.61,133.20,132.62$, $130.28,127.53,120.90,86.59,76.35,75.25,70.78,70.62,54.83,47.75$, $38.35,38.04,37.81,29.67,27.40,25.86,25.79,20.47,18.23,18.07$,
16.64, 13.58, 12.58, $-3.79,-4.48,-4.78$. Anal. Calcd for $\mathrm{C}_{40} \mathrm{H}_{65}-$ $\mathrm{NO}_{9} \mathrm{Si}_{2}$: C, $63.20 ; \mathrm{H}, 8.62$. Found: C, 63.03 ; H, 8.83 .
$\left[2 S-\left[1 S-\left(1 R^{*}, 2 S^{*}, 3 E, 5 E, 7 R^{*}, 9 E, 11 E, 13 R^{*}, 15 S^{*}, 19 S^{*}\right)\right]\right]-N \cdot[18-H y-$ droxy-7,13-bis[[(1,1-dimethylethyl)dimethylsilyl]oxy]-1,4,10,19-tet-ramethyl-17-oxo-16-oxabicyclo[13.2.2]nonadeca-3,5,9,11-tetraen-2-yl]-2-hydroxypropanamide (19, Synthetic from Relay 15). To a solution of $10 \mathrm{mg}(0.013)$ of $\mathbf{1 7}$ in 0.5 mL of a mixture of $\mathrm{THF}-\mathrm{H}_{2} \mathrm{O}$ (3:1) at $0^{\circ} \mathrm{C}$ was added $2.0 \mathrm{mg}(0.049 \mathrm{mmol})$ of $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}$. After 30 \min at $0^{\circ} \mathrm{C}$, the reaction mixture was diluted with 5 mL of EtOAc, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The residue was purified by preparative TLC (EtOAc) to give $7.5 \mathrm{mg}(82 \%)$ of 19 as a white solid: mp $226-228{ }^{\circ} \mathrm{C}$ (from EtOAc); $[\alpha]^{25}{ }_{\mathrm{D}}-85.1^{\circ}$ (c $1.30, \mathrm{MeOH}$); $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 3410,2950,2930,2855,1722,1660,1500$, $1460,1250,1050,835 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.82(\mathrm{~d}$, $J=19.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.70-5.59(\mathrm{~m}$, overlapping signals, 3 H), $5.50-5.40(\mathrm{~m}$, overlapping signals, 3 H), 5.28 (dd, $J=$ $6.5,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~m}, 1 \mathrm{H}), 4.21(\mathrm{~m}, 1 \mathrm{H}), 4.04(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{br}$ $\mathrm{d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{br} \mathrm{d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~m}, 1 \mathrm{H}), 2.25$ $(\mathrm{m}, 1 \mathrm{H}), 2.20-2.02(\mathrm{~m}$, overlapping signals, 2 H$), 1.85(\mathrm{~s}, 3 \mathrm{H}), 1.50$ $(\mathrm{s}, 3 \mathrm{H}), 1.42(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~d}, J=6.3 \mathrm{~Hz}$, $3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.06$ (s , overlapping signals, $6 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.18,174.62$, 137.73, 137.21, 136.50, 134.04, 130.79, 129.37, 127.74, 127.05, 81.01, 78.06, 75.45, 71.22, 68.33, 52.98, 51.16, 39.10, 38.84, 38.09, 27.53, $25.89,21.43,18.26,18.06,13.37,12.63,12.43,-3.80,-4.44,-4.77$. Anal. Calcd for $\mathrm{C}_{40} \mathrm{H}_{65} \mathrm{NO}_{9} \mathrm{Si}_{2}$: C, 64.21; H, 9.47; N, 2.02. Found: C, 64.21; H, 9.69; N, 2.08 .
$\left[1 S-\left(1 R^{*}, 2 S^{*}, 3 E, 5 E, 7 R^{*}, 9 E, 11 E, 13 R^{*}, 15 S^{*}, 19 S^{*}\right)\right]-N-[7,13-B i s-$ [[(1,1-dimethylethyl)dimethylsilyl]oxy]-1,4,10,19-tetramethyl-17,18-dioxo-16-oxabicyclo[13.2.2]nonadeca-3,5,9,11-tetraen-2-yl]-2-oxopropanamide (20, Synthetic from Relay 15). To a solution of 7.5 $\mathrm{mg}(0.0108 \mathrm{mmol})$ of 19 in 0.5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at ambient temperature was added $20 \mathrm{mg}(0.047 \mathrm{mmol})$ of Dess-Martin periodinane. After the resultant suspension was stirred for $15 \mathrm{~min}, 0.5 \mathrm{~mL}$ each of saturated aqueous NaHCO_{3} and saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ were added. The mixture was stirred at ambient temperature for 15 min before the layers were separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 2$ mL). The combined organic layers were dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. Purification by preparative TLC (EtOAc) gave 7.2 mg (96%) of the expected alcohol as a white solid: $\mathrm{mp} 223-224^{\circ} \mathrm{C}$ (from EtOAc); $[\alpha]^{25} \mathrm{D}-174.5^{\circ}$ (c $0.70, \mathrm{CHCl}_{3}$); IR $\left(\mathrm{CHCl}_{3}\right) 3390,2950,2930,2850,1750,1710,1685,1255,1105,835$ cm^{-1}; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.10(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.00$ $(\mathrm{d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{dd}, J=9.4,15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.5(\mathrm{~m}$, overlapping signals, 2 H), $5.43(\mathrm{t}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{dd}, J=5.1$, $11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~m}, 1 \mathrm{H}), 4.31(\mathrm{~m}, 1 \mathrm{H})$, $4.00(\mathrm{~m}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.46-2.40(\mathrm{~m}$, overlapping signals, 2 H), $2.37-2.23$ (m , overlapping signals, 2 H), $2.2-2.1(\mathrm{~m}, 1 \mathrm{H}), 1.9(\mathrm{~s}, 3 \mathrm{H})$, $1.53(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.85$ $(\mathrm{s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 211.16,196.50,169.74,159.65,139.51,136.94$, $136.39,133.02,132.61,129.92,127.85,123.54,75.61,75.35,70.73$, $56.74,51.79,46.40,38.33,38.00,25.83,25.74,24.42,20.93,18.20$, $18.02,12.80,12.60,9.55,-3.85,-4.46,-4.58,-4.84$. Anal. Calcd for $\mathrm{C}_{37} \mathrm{H}_{61} \mathrm{NO}_{7} \mathrm{Si}_{2}: \mathrm{C}, 64.58 ; \mathrm{H}, 8.94 ; \mathrm{N}, 2.03$. Found: $\mathrm{C}, 64.32 ; \mathrm{H}$, 9.02; N, 2.06 .

Lankacidin C (1) (Synthetic from Relay 15). A solution of 16 $\mathrm{mg}(0.023 \mathrm{mmol})$ of $\mathbf{2 0}$ in 2.0 mL of a mixture of THF- $\mathrm{HCOOH}-$ $\mathrm{H}_{2} \mathrm{O}$ (6:3:1) was stirred at ambient temperature for 3 h . The mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and neutralized with saturated aqueous NaHCO_{3} $(2 \mathrm{~mL})$. The mixture was poured into 10 mL each of EtOAc and brine. The aqueous layer was extracted with 10 mL of EtOAc. The combined organic layers were dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. Purification by preparative TLC (EtOAc) gave $8.7 \mathrm{mg}(82 \%)$ of lankacidin C as a white solid: $\mathrm{mp} 199-201^{\circ} \mathrm{C} \mathrm{dec}$; $[\alpha]^{22 \mathrm{D}}-234.0^{\circ}$ ($c 0.70, \mathrm{EtOH}$); IR (CHCl_{3}) 3600, 3440, 2990, 1750, $1710,1685,1500,1358,1255,1005,965,910 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 8.00(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~d}, J=15.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.52(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{dd}, J=15.4,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.36$ (dd, $J=15.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.2(\mathrm{~m}$, overlapping signals, 2 H), $5.00(\mathrm{~d}$, $J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.66(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{~m}, 1 \mathrm{H})$,
$2.33(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~m}, 2 \mathrm{H}), 2.10(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H})$, $1.39(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $(300$ MHz , DMSO- d_{6}) $\delta 211.53,197.01,170.70,160.08,137.99,136.41$, 135.59, 133.05, 132.84, 130.85, 128.07, 124.55, 75.47, 73.44, 68.41, 56.72, 51.61, 46.34, 37.71, 24.91, 20.77, 12.82, 12.68, 9.59. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{NO}_{7}$: C, 65.34; H, 7.24; N, 3.05. Found: C, 65.49 ; H,7.05; N, 3.01.

Data for Natural Lankacidin C: mp 199-200 ${ }^{\circ} \mathrm{C}$ dec; $[\alpha]^{22} \mathrm{D}$ -225.0° (c $1.00, \mathrm{EtOH}$); IR $\left(\mathrm{CHCl}_{3}\right) 3600,3440,2990,1750,1710$, $1685,1500,1358,1255,1005,965,910 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{0}) $\delta 8.00(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.52(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{dd}, J=15.4,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{dd}$, $J=15.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.2$ (m, overlapping signals, 2 H), $5.00(\mathrm{~d}, J=$ $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.66$ $(\mathrm{d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{~m}, 1 \mathrm{H}), 2.33$ $(\mathrm{s}, 3 \mathrm{H}), 2.20(\mathrm{~m}, 2 \mathrm{H}), 2.10(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.39$ $(\mathrm{s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (300 MHz , DMSO- d_{6}) $\delta 211.52,197.01,170.69,160.08,137.99,136.41,135.59$, $133.05,132.83,130.85,128.07,124.55,75.47,73.43,68.41,56.72$, $51.61,46.34,37.71,24.91,20.77,12.82,12.68,9.59$.

Acknowledgment. Partial support of this work by Grant CA18846, awarded by the National Cancer Institute (NIH), by grants from the French Ministry of Foreign Affairs and l'Institut de Recherches Servier (to G.D.), and by Sherman Clarke Fellowships (to K.L. and K.K.) is gratefully acknowledged. We thank Takeda Chemical Industries for providing us with a sample of lankacidin C, Dr. Tom Jackson (Kodak Research Laboratories) for the FAB mass spectra, and Mr. Yasuhiro Fujii for the resynthesis of β-lactam intermediates.

Supporting Information Available: Text describing full experimental details and characterization for $37,39-41,48$, 52, and 53 (8 pages). This material is contained in many libraries on microfiche, immediately follows this article in the microfilm version of the journal, can be ordered from the ACS, and can be downloaded from the Internet; see any current masthead page for ordering information and Internet access instructions.

JA951396V

[^0]: ${ }^{\otimes}$ Abstract published in Advance ACS Abstracts. July 15, 1995.
 (1) Gaumann, E.; Huter, R.; Keller-Schierlein, W.; Neipp, L.; Prelog, V.; Zahner, H. Helv. Chim. Acta 1964, 47, 78.
 (2) Sakamoto, J. M. J.; Kondo, S.; Yumoto, S.; Arishima, M. J. Antibiot., Ser. A 1962, 15, 98.
 (3) (a) Harada, S.; Higashide, E.; Fugono, T.; Kishi, T. Tetrahedron Lett. 1969, 27, 2239. (b) Higashide, E.; Hugono, T.; Hatano, K.; Shibata, M. J. Antibiot. 1971, 24, 1. (c) Harada, S.; Kishi, T.; Mizuno, K. J. Antibiot. 1971, 24, 13. (d) Fugono, T.; Harada, S.; Higashide, E; Kishi, T. J. Antibiot. 1971, 24, 23.
 (4) (a) Harada, S.; Kishi, T. Chem. Pharm. Bull. 1974, 22, 99. (b) Harada, S. Chem. Pharm. Bull. 1975, 23, 2201.
 (5) (a) Uramoto, M.; Otake, N.; Ogawa, Y.; Yonehara, H. Tetrahedron Lett. 1969, 27, 2249. (b) Kamiya, K.; Harada, S.; Wada, Y.; Nishikawa, M.; Kishi, T. Tetrahedron Lett. 1969, 27, 2245.
 (6) Tsuchiya, K.; Yamazaki, T.; Takeuchi, Y. J. Antibiot. 1971, 24, 29.
 (7) Harada, S.; Yamazaki, T.; Hatano, K.; Tsuchiya, K.; Kishi, T. J. Antibiot. 1973, 26, 647.

[^1]: (8) (a) Ootsu, K.; Matsumoto, T. Gann 1973, 64, 481. (b) Ootsu, K.; Matsumoto, T.; Harada, S.; Kishi, T. Cancer Chemother. Rep., Part 1 1975, 59, 919.
 (9) Kakinuma, K.; Uzawa, J.; Uramoto, M. Tetrahedron Lett. 1982, 23 , 5303.
 (10) For an illustration of this instability, see: McFarland, J. W.; Pirie, D. K.; Retsema, J. A.; English, A. R. Antimicrob. Agents Chemother. 1984, 25, 226.
 (11) (a) Fray, M. J.; Thomas, E. J. Tetrahedron 1984, 40, 673. (b) Thomas, E. J.; Williams, A. C. J. Chem. Soc., Chem. Commun. 1987, 992. (c) Kende, A. S.; Luzzio, M. J.; Koch, K. In Chemistry and Biotechnology of Biologically Active Natural Products, Proceedings of the Fourth International Conference, Budapest, Hungary, Aug 10-15, 1987; Szántay, C., Ed.; Akad Kiado: Budapest, 1988; p 93; Chem. Abstr. 1989, 111, 214771 m . (d) Rieger, D. L. Ph.D. Thesis, Department of Chemistry, Indiana University, 1989; Chem. Abstr. 1990, 113, 58758w. (e) Roe, J. M.; Thomas, E. J. Synlett 1990, 727. (f) Thomas, E. J.; Williams, A. C. J. Chem. Soc., Perkin Trans. 1 1995, 351. (g) Roe, J. M.; Thomas, E. J. J. Chem. Soc., Perkin Trans. 1 1995, 359.

[^2]: (12) For our preliminary report, see: Kende, A. S.; Koch, K.; Dorey, G.; Kaldor, I.; Liu, K. J. Am. Chem. Soc. 1993, 115, 9842.
 (13) Stille, J. W. Angew. Chem.. Int. Ed. Engl. 1986, 25, 508.
 (14) (a) Stork, G.; Depezay, J. C.; d'Angelo, J. Tetrahedron Lett. 1975, 389. (b) Takahashi, T.; Nemoto, H.; Tsuji, J. Tetrahedron Lett. 1983, 22, 1359.

[^3]: (15) (a) For a review, see: Boyd, D. B. In Chemistry and Biology of β-Lactam Antibiotics; Morin, R. B., Gorman, M., Ed.; Academic Press: New York, 1982; Vol. 1, pp 482-484. (b) Hughes, D. W.; Vilim, A.; Wilson, W. L. Can. J. Pharm. Sci. 1976, 11, 97. (c) Yamana, T.; Tsuji, A.; Kiya, E. J. Pharm. Sci. 1977, 66, 861. (d) Indelicato, J. M.; Norvilas, T. T.; Pfeiffer, R. R.; Wheeler, W. J.; Wilham, W. L. J. Med. Chem. 1974, 17, 523.
 (16) For a review, see: Cohen, L. A.; Witkop, B. In Molecular Rearrangements; deMayo, P., Ed.; Wiley-Interscience: New York, 1964; Vol. 2, pp 992-995.
 (17) For a discussion of the acid-catalyzed hydrolysis of lactams, see: Wan, P.; Modro, T. A.; Yates, K. Can. J. Chem. 1980, 58, 2423.
 (18) Koch, K. Ph.D. Thesis, Department of Chemistry, University of Rochester, New York, 1988; Diss. Abstr. Int., B 1989, 50 (4), 1416. An account of our β-lactam rearrangement strategy toward lankacidin C, describing a successful prototype rearrangement to form a hydroxypyranone, was reported in August 1987 in Budapest, as cited in ref lic. For an analogous and independently conceived approach, see ref 11 b ,e.
 (19) (a) Labia, R.; Morin, C. Chem. Lett. 1984, 1007. (b) Salzmann, T. H.; Ratcliffe, R. W.; Christensen, B. G.; Bouffard, F. A. J. Am. Chem. Soc. 1980, 102, 6161 .
 (20) (a) Wong, M. Y. H.; Gray, R. G. J. Am. Chem. Soc. 1978, 100 , 3548. (b) Maehr, H.; Perrotta, A.; Smallheer, J. J. Org. Chem. 1988, 53, 832.
 (21) A sample of lankacidin C was kindly provided by Takeda Chemical Industries.

[^4]: (22) Formation of both $\mathrm{C}\left(2^{\prime}\right)$ carbinols on controlled reduction has been reported in ref 4 a.
 (23) Evans, D. A.; Britton, T. C.; Ellman, J. A. Tetrahedron Lett. 1987, 28, 6141 .

[^5]: (24) (a) Flynn, D. L.; Zelle, R. E.; Grieco, P. A. J. Org. Chem. 1983, 48, 2424. (b) Ishizuka, T.; Kunieda, T. Tetrahedron Lett. 1987, 28, 4185. (25) For the preparation, use, and possible hazards of the Dess-Martin periodinane, see: Dess, D. B.; Martin, J. C. J. Am. Chem. Soc. 1991, 113, 7277.
 (26) McGarvey, G. J.; Williams, J. M.; Hiner, R. N.; Matsubara, Y.; Oh, T. J. Am. Chem. Soc. 1986, 108, 4943.
 (27) Christensen, B. G.; Ratcliffe, R. W. Eur. Pat. Appl. EP 38,869, Nov 4, 1981; Chem. Abstr. 1982, 96, 199398w. See also: Reider, P. J.; Grabowski, E. J. J. Tetrahedron Lett. 1982, 23, 2293.

[^6]: (28) Ito, Y.; Katsuki, T.; Yamaguchi, M. Tetrahedron Lett. 1985, 4643 and references cited therein.
 (29) Schlessinger, R. H.; Tata, J. R.; Springer, J. P. J. Org. Chem. 1987, 52, 708.
 (30) Evans, D. A. Personal communication.
 (31) Cf.: Brown, H. C.; Bhat, K. S. J. Am. Chem. Soc. 1986, 108, 283.
 (32) Lindgreen, B. O.; Nilsson, T. Acta Chem. Scand. 1973, 27, 888.

[^7]: (33) For the preparation, use, and possible hazards of diazomethane, see: Black, T. H. Aldrichim. Acta 1983, 16 (1), 3.
 (34) Iwata, M.; Ohrui, H. Bull. Chem. Soc. Jpn. 1981, 54, 2837.
 (35) Criegee, R.; Höger, E.; Huber, G.; Kruck, P.; Marktscheffel, F.; Schellenberger, H. Justus Liebigs Ann. Chem. 1956, 599, 81.
 (36) Takai, K.; Nitta, K.; Utimoto, K. J. Am. Chem. Soc. 1986, 108, 7408.
 (37) (a) Corey, E. J.; Nicolaou, K. C. J. Am. Chem. Soc. 1974, 96, 5614. (b) Gerlach, H.; Thalmann, A. Helv. Chim. Acta 1974, 57, 2661.
 (38) Schlessinger, H. R.; Poss, M. A.; Richardson, S.; Lin, P. Tetrahedron Lett. 1985, 26, 2391.

[^8]: (39) For an analogous C-acylation, see ref 1le.

[^9]: (40) Classon, B.; Garegg, P. J.; Samuelsson, B. Acta Chem. Scand., Ser. B 1984, 38, 419.
 (41) Bouffard, F. A.; Christensen, B. G J. Org. Chem. 1981, 46, 2208.
 (42) Piers, E.; Morton, H. E. J. Org. Chem. 1980, 45, 4263.
 (43) Evans, D. A.; Andrews, G. C. Acc. Chem. Res. 1974, 7, 147.

[^10]: (44) Imomata, K.; Igarashi, S.; Mohri, M.; Yamamoto, T.; Kinoshita, H.; Kotae, H. Chem. Lett. 1987, 707.
 (45) For an analogous oxidation of α-sulfonyl ketones to the corresponding diketones, see: Williams, D. R.; Robinson, L. A.; Amato, G. S.; Osterhout, M. H. J. Org. Chem. 1992, 57, 3740.
 (46) (a) Takahashi, T.; Nemoto, H.; Tsuji, J. Tetrahedron Lett. 1983, 24, 3485. (b) Takahashi, T.; Kitamura, K.; Nemoto, H.; Tsuji, J. Tetrahedron Lett. 1983, 24, 3489. (c) Takahashi, T.; Kitamura, K.; Tsuji, J. Tetrahedron Lett. 1983, 24, 4695. (d) Takahashi, T.; Kanda, Y.; Memoto, H.; Kitamura, K.; Tsuji, J.; Fukazawa, Y. J. Org. Chem. 1986, 51, 3393. (e) Takayanagi, H.; Kitano, Y.; Morinaka, Y. Tetrahedron Lett. 1990, 31, 3317.
 (47) Collington, E. W.; Meyers, A. I. J. Org. Chem. 1971, 36, 3044.

[^11]: (48) Luche, J. L. J. Am. Chem. Soc. 1978, 100, 2226.
 (49) The $C(8)$ stereochemistry of the reduction product was established by comparing the spectra of the corresponding TBS ether with those of the relay 15 .
 (50) (a) Corey, E. J.; Bakshi, R. K.; Shibata, S.; Chen, C.-P.; Singh, V. J. Am. Chem. Soc. 1987, 109, 7925. (b) Mathre, D. J.; Jones, T. K.; Xavier, L. C.; Thomas, T. J.; Reamer, R. A.; Mohan, J. J.; Jones, E. T. T.; Hoogsteen, K.; Baum, M. W.; Grabowski, E. J. J. J. Org. Chem. 1991, 56, 751.

